ITERATION OF CERTAIN FINITE TRANSFORMATION.

By

Minoru URABE.

(Received Sept., 25, 1952)

Preface.

Given the finite transformation of the form as follows:

(0.1)
$$T: \ 'x^{\nu} = \varphi^{\nu}(x) = a^{\nu}_{\mu}x^{\mu} + a^{\nu}_{\mu_{1}\mu_{2}}x^{\mu_{1}}x^{\mu_{2}} + \cdots$$

We consider the case where the absoulte values of all the eigen values λ_{ν} of $||a_{\mu}^{\nu}||$ are unity. In the previous paper⁽²⁾, it was shown that, when T is majorized, the equations of Schröder for T can be solved and, that, by means of their solutions, T is reduced to the linear transformation such that $'x^{\nu} = \lambda_{\nu}x^{\nu}$ (not summed by ν). When the arguments of the eigen values are all commensurable with 2π , by iteration of certain times, T can be reduced to the transformation where the eigen values are all unity. In this paper, we deal with this case. When T is majorized, the reduced transformation becomes an identical transformation⁽³⁾. In this paper, we do not assume the condition of majorizedness. By effecting a suitable linear transformation of the variables x^{ν} , without loss of generality, we may assume that $||a_{\mu}^{\nu}||$ is of Jordan's form. Thus the transformation which becomes a subject in this paper, may be written as follows:

(0.2)
$$T: \ 'x^{\nu} = \varphi^{\nu}(x) = x^{\nu} + \delta_{\nu-1} x^{\nu-1} + a^{\nu}_{\mu_1 \mu_2} x^{\mu_1} x^{\mu_2} + \cdots ,$$

where $\delta_{y-1} = 0$ or 1.

In the case of one variable, the characters of the transformation of the form (0.2) were studied by means of iteration⁽⁴⁾, and, in the neighborhood of the origin, there was found a domain, of which all the points converge to the origin always remaining in it when the transformation is

1) $a_{\mu}^{\nu}x^{\mu}$, $a_{\mu_{1}\mu_{2}}^{\nu}x^{\mu_{1}}x^{\mu_{2}}$, mean that $\sum_{\mu}a_{\mu}^{\nu}x^{\mu}$, $\sum_{\mu_{1},\mu_{2}}a_{\mu_{1}\mu_{2}}^{\nu}x^{\mu_{1}}x^{\mu_{2}}$, In the following, we use this convention of tensor calculus.

- G. Julia, Jour. Math. Pures Appl. (1918).
- J. Malmquist, 1er mémoire, Ark. Mat. Ast. Fys. (1921).

²⁾ M. Urabe, Application of majorized group of transformations to functional equations, this Journal Vol. 16, No. 2 (1952), pp. 267-283.

³⁾ do.

⁴⁾ M. P. Fatou, Bull. Soc. Math. (1919).