ITERATION OF CERTAIN FINITE TRANSFORMATION.

By

Minoru URABE.
(Received Sept., 25, 1952)

Preface.

Given the finite transformation of the form as follows:

$$
\begin{equation*}
T: \quad ' x^{\nu}=\varphi^{\nu}(x)=a_{\mu}^{\nu} x^{\mu}+a_{\mu_{1} \mu_{2}}^{\nu} x^{\mu_{1}} x^{\mu_{2}}+\cdots \cdots \cdot .{ }^{(1)} \tag{0.1}
\end{equation*}
$$

We consider the case where the absoulte values of all the eigen values λ_{ν} of $\left\|a_{\mu}^{\nu}\right\|$ are unity. In the previous paper ${ }^{(2)}$, it was shown that, when T is majorized, the equations of Schrc̈der for T can be solved and, that, by means of their solutions, T is reduced to the linear transformation such that ${ }^{\prime} x^{\nu}=\lambda_{\nu} x^{\nu}$ (not summed by ν). When the arguments of the eigen values are all commensurable with 2π, by iteration of certain times, T can be reduced to the transformation where the eigen values are all unity. In this paper, we deal with this case. When T is majorized, the reduced transformation becomes an identical transformation ${ }^{(3)}$. In this paper, we do not assume the condition of majorizedness. By effecting a suitable linear transformation of the variables x^{ν}, without loss of generality, we may assume that $\left\|a_{\mu}^{\nu}\right\|$ is of Jordan's form. Thus the transformation which becomes a subject in this paper, may be written as follows:

$$
\begin{equation*}
T: \quad \prime x^{\nu}=\varphi^{\nu}(x)=x^{\nu}+\delta_{\nu-1} x^{\nu-1}+a_{\mu_{1} \mu_{2}}^{\nu} x^{\mu_{1}} x^{\mu_{2}}+\cdots \cdots, \tag{0.2}
\end{equation*}
$$

where $\delta_{\nu-i}=0$ or 1 .
In the case of one variable, the characters of the transformation of the form (0.2) were studied by means of iteration ${ }^{(4)}$, and, in the neighborhood of the origin, there was found a domain, of which all the points converge to the origin always remaining in it when the transformation is

1) $a_{\mu}^{\nu} x^{\mu}, a_{\mu_{1} \mu_{2}}^{\nu} x^{\mu_{i}} x^{\mu_{2}}, \ldots \ldots$ mean that $\sum_{\mu} a_{\mu}^{\nu} x^{\mu}, \sum_{\mu_{i}, \mu_{2}} a_{\mu_{1} \mu_{2}}^{\nu} x^{\mu_{i}} x^{\mu_{2}}, \ldots \ldots$. In the following, we use this convention of tensor calculus.
2) M. Urabe, Application of majorized group of transformations to functional equations, this Journal Vol. 16, No. 2 (1952), pp. 267-283.
3) do.
4) M. P. Fatou, Bull. Soc. Math. (1919).
G. Julia, Jour. Math. Pures Appl. (1918).
J. Malmquist, $1^{e r}$ mémoire, Ark. Mat. Ast. Fys. (1921).
