A LATTICE FORMULATION FOR ALGEBRAIC AND TRANSCENDENTAL EXTENTIONS IN ABSTRACT ALGEBRAS

By
Fumitomo MAEDA
(Received Sept. 30, 1952)

MacLane [1] ${ }^{1)}$ has proved that the relatively algebraically closed subfields of any field Ω form a matroid lattice ${ }^{2)}$, and the transcendence degree is obtained as a lattice-theoretic dimension in this matroid lattice. But he did not consider the lattice-theoretic character of algebraic and transcendental extensions of subfields of Ω. On the other hand, in the lattice of convex sets there are two cases of the adjunctions of a point p to a convex set A, namely (1) p is contained in the least linear set \bar{A} containing A, and (2) p is not contained in \bar{A}. In the case (1) the convex set obtained by the adjunction of p to A has the same dimension as A, but in the case (2) by the adjunction the dimension increases. These two cases are similar to a simple algebraic extension and a simple transcendental extension of subfields respectively. Hence we may expect that there exists a lattice theory which contains both the theory of extensions of fields and the theory of extensions of convex sets.

In this paper, I first find a Φ-relatively molecular, upper continuous lattice L such that the lattice of all subalgebras of an abstract algebra with finitary operations and lattice of all subgeometries of an abstract geometry with finitary operations ${ }^{3}$ are special cases of such a lattice L, where Φ is the set of principal subalgebras and the set of principal subgeometries, that is points, respectively. Introducing in Φ the dependence relation formulated by van der Waerden [1, p.204], I investigate the theory of extensions in L, with a view to showing that the theory of extension of fields and the theory of extension of convex sets are the special cases of this general theory.

[^0]
[^0]: 1) The numbers is square brackets refer to the list of references at the end of this paper.
 2) MacLane used "exchange lattice" instead of " matroid lattice", but these two conceptions are equivalent. Cf. Maeda [1] 181.
 3) For the abstract geometry with finitary operations, cf. Maeda [1].
