LATTICE THEORETIC CHARACTERIZATION OF AN AFFINE GEOMETRY OF ARBITRARY DIMENSIONS

By
Usa SASAKI

(Received April 30, 1952)
G. Birkhoff [1] ${ }^{1)}$ and K. Menger [1] have characterized lattice theoretically projective and affine geometries of finite dimensions, while a projective geometry of arbitrary dimensions, finite or infinite, has been characterized by O. Frink [1] and W. Prenowitz [1].

The purpose of this paper is to characterize the lattice of all subspaces of an affine space of arbitrary dimensions. The main theorem is as follows:

Theorem. An abstract lattice L is isomorphic to the lattice of all subspaces of an affine space if and on'y if L is relatively atomic, upper continuous lattice which is semi-modular in the sense of Wilcox and satisfies the following condition:

Let p, q, r be independent atomic elements of L, then there exists one and only one element l such that $p<l<p \cup q \cup r$, and $l \cap(q \cup r)=0$.

In the appendix, we shall give a proof that the axiom I_{7} of Hilbert [1] p. 4 is equivalent to the transitivity of parallel lines in a 3 -space.

Before going further the writer wishes to express his hearty thanks to Prof. F. Maeda for his kind guidance and to Prof. K. Morinaga for his valuable suggestions.

§ 1. A Projective Space and an Affine Space.

Definition 1.1. Let G be a set of points. If for any pair of distinct points p, q of G, there exists a subset $p+q$ (called line of G) containing p and q, which satisfies the following conditions, then G is called a projective space. ${ }^{2)}$
P.1. Two distinct points on a line determine the line.
P.2. If p, q, r are points not all on the same line, and u and $v(u \neq v)$ are points such that p, q, u are on a line and p, r, v are on a line, then there is a point w such that q, r, w are on a line, and also u, v, w are on a line.

[^0]
[^0]: 1) The numbers in square brackets refer to the list of references at the end of the paper.
 2) Cf. Birkhoff [2] 116.
