ON THE LINEARIZATION OF A FORM OF HIGHER DEGREE AND ITS REPRESENTATION

By

Kakutarō MORINAGA and Takayuki NONO

(Received Jan. 8, 1952)

In the theory of invariants, an *n*-ary form of degree $m \sum a_{i_1i_2...i_m} x^{i_1} x^{i_2} ... x^{i_m}$ $(i_1, i_2, ..., i_m = 1, 2, ..., n)$ is treated, only symbolically, in the linearized form

$$\sum_{i_1, i_2, \dots, i_m=1}^n a_{i_1 i_2 \dots i_m} x^{i_1} x^{i_2} \dots x^{i_m} = (\sum_{i=1}^n a_i x^i)^m$$

where a_i are mere symbols, satisfying the relations

$$a_i a_k = a_k a_i$$
, $a_{i_1} a_{i_2} \dots a_{i_m} = a_{i_1 i_2 \dots i_m}$ ¹⁾.

And, in the theory of spinors, an *n*-ary quadratic form $a_{ij}x^ix^j(a_{ij}=a_{ji})$ is linearized by the quantities γ_i satisfying $\gamma_{(i}\gamma_{j)}=a_{ij}$, in the form

$$\sum_{i,j=1}^{n} a_{ij} x^{i} x^{j} = (\sum_{i=1}^{n} \gamma_{i} x^{i})^{2},$$

and the structure and representation of the Clifford algebra generated by these γ_i have been investigated by many authors.²⁾

We wish to extend the theory of spinors, by linearizing the *n*-ary form of degree $m \sum a_{i_1i_2...i_m} x^{i_1} x^{i_2} ... x^{i_m}$ by the quantities p_i in the form $\sum a_{i_1...i_n} x^{i_1} ... x^{i_m} = (\sum_{i=1}^n p_i x^i)^m$, and by investigating the structure and representation of the algebra generated by these p_i . In this paper, we shall define the generalized Clifford algebra by extending the concept of the ordinary Clifford algebra, and consider the linearization of $\sum_{i=1}^n (x^i)^m$ and its representation, by means of the particular case of this algebra.

However, the above quantities p_i satisfy the relations $p_i p_k = \omega p_k p_i$, different from the Weitzenböck's symbols a_i . But, from the standpoint of the theory of invariants, this fact does not come into question.

§1. Generalized Clifford Algebra

We shall define a generalized Clifford algebra (briefly G. C. algebra), by extending the concept of the ordinary Clifford algebra.³

¹⁾ R. Weitzenbück, Invarianten Thecrie, (1923), p. 3.

²⁾ R. Brauer and H. Weyl, Spinors in *n* dimensions, Amer. J. Math., vol. 57 (1935), pp. 425-449; C. Chevalley, Theory of Lie groups, (1946), p. 61.

³⁾ C. Chevalley, ibid.