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Introduction. An interesting characterization of integrally closed Noetherian 

integral domains by the notion of symbolic powers was obtained by Prof. S. Mori 

and T. Dodo in the following form. 

THEOREM (M). Let o be a Noetherian integral domain with a unit element. If 

o is integrally closed, then it follows that 

i) Every prime divisor of any principal ideal (a)(=\= (0), =\= o) is minimal, and 

ii) Every primary ideal which belongs to any minimal prime ideal p, is a sym

bolic powor of p. 
Conversely, if the following condition iii) is satisfied, o is integrally closed. 

iii) If p is any prime divisor of any principal ideal then there exists no primary 

ideal between p and ti<2>_1> 

In this note we extend this theorem to the case where o is not free from zero 

divisors. The main purpose of this paper is to prove the following 

THEOREM 1. Let o be a Noetherian ring wz"th a unit element, and let K be its 
total quotient ri"ng. Assume first o is integrally closed in K. Then 

i) Let p be any Prime divisor of any regular principal ideal (a)(=\=o). Then 

p contains properly only one prime z"deal and this prime ideal is a primary com

ponent of the zero ideal. 

ii) Let p be any minimal regular prime z"deal i'n o, then every Primary ideal 
which belongs to p is a symbolz"c power of p. 

Conversely, if o satisfies the following condition iii), o is integrally closed. 
iii) If p is any prz"me divisor of any regular principal ideal, then there exists 

no primary ideal between p and p(2). 
Our proof is entirely based on the so-called primary ideal theorem and device 

of forming quotient rings. 

Conventions of terminology. Let o be a Noetherian ring and let K be its 

total quotient ring. If a is an ideal in o, we call prime divisors of a the prime 

ideals which occur as associated prime ideals of the primary ideals in a shortest 

representation of a as an intersection of primary ideals. 

Non zero divisor of o shall be called regular. We shall call an ideal a in o 

1) S. Mori und T. Dodo, BedinP,ungen fur ganze Abgeschlossenheit in lntegritiitsbereichen, 
This Journal 7 (1937) 15-28. 
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