A Note on Semi-Local Rings

By

Michio YoshiDa and Motoyoshi Sakuma

(Received July 31, 1953)

The object of this note is to give the complete information on the indecomposable components of the completions of semi-local rings.

Let \mathfrak{o} be a commutative ring, and let \mathfrak{m} be an ideal in \mathfrak{o} such that $\bigwedge_{n=1}^{\infty}\mathfrak{m}^n = (0)$. The metrisable, uniform structure, defined in \mathfrak{o} by adopting the set $\{\mathfrak{m}^n; n=1, 2, \dots\}$ as a fundamental system of neighbourhoods of zero, shall be called an \mathfrak{m} -adic topology. If we give this topology to \mathfrak{o} , it becomes a topological ring and we shall call thus topologized ring an \mathfrak{m} -adic ring.

The completion of an m-adic ring \mathfrak{o} shall be called an m-adic completion of \mathfrak{o} , and shall be denoted by $\overline{\mathfrak{o}}$. If we denote by $\overline{\mathfrak{m}^{\sigma}}$ the adherence of \mathfrak{m}^{σ} in $\overline{\mathfrak{o}}$, the set $\{\overline{\mathfrak{m}^{\sigma}}; \sigma=1,2,\dots\}$ is a fundamental system of neighbourhoods of zero in $\overline{\mathfrak{o}}$. If m has a finite base, then we have $\overline{\mathfrak{m}^{\sigma}}=\overline{\mathfrak{m}}^{\sigma}$, and $\overline{\mathfrak{o}}$ is an $\overline{\mathfrak{m}}$ -adic ring. If moreover \mathfrak{o} has a unit element, then $\overline{\mathfrak{m}}=\mathfrak{m}\overline{\mathfrak{o}}$. If \mathfrak{o} is a Noetherian ring (that is, a commutative ring with the maximal condition for ideals) with a unit element, so is $\overline{\mathfrak{o}}$ too.

DEFINITION (D). Let $\mathfrak{m}, \mathfrak{m}_1$ be ideals in \mathfrak{d} , such that $\mathfrak{m} \leq \mathfrak{m}_1$, and $\bigwedge \mathfrak{m}^n = (0)$. Set $\bigwedge \mathfrak{m}_1^n = \mathfrak{m}_1^{\infty}, \mathfrak{d}/\mathfrak{m}_1^{\infty} = \mathfrak{d}_1', \mathfrak{m}_1/\mathfrak{m}_1^{\infty} = \mathfrak{m}_1'$, and let $\tilde{\mathfrak{d}}, \tilde{\mathfrak{d}}_1$ be the m-adic and the \mathfrak{m}_1' -adic completion of \mathfrak{d} and \mathfrak{d}_1' respectively. Let x^* be any element in $\tilde{\mathfrak{d}}$, and let $x^* = \lim x_n$ $(x_n \in \mathfrak{d})$. Then if we denote by x'_n the residue class modulo \mathfrak{m}_1^{∞} which contains x_n , $\{x'_n\}$ is a Cauchy sequence in the \mathfrak{m}_1' -adic ring \mathfrak{d}_1' . If we denote by x^{**} the limit of $\{x'_n\}$ in $\tilde{\mathfrak{d}}_1$, then the mapping $\tau_1: x^* \to x^{**}$ is clearly a homomorphism (that is, a continuous ring-homomorphism) of $\tilde{\mathfrak{d}}$ into $\tilde{\mathfrak{d}}_1$. This shall be called the canonical homomorphism of $\tilde{\mathfrak{d}}$ into $\tilde{\mathfrak{d}}_1$.

Now, let \mathfrak{m}_i $(i=1,2,\dots,r)$ be ideals in \mathfrak{d} such that $\mathfrak{m} \leq \mathfrak{m}_i$, and define $\overline{\mathfrak{d}}_i$, τ_i similarly as \mathfrak{d}_1' , τ_1 . Then the mapping τ of $\overline{\mathfrak{d}}$ into the direct sum $\widetilde{\mathfrak{d}}$ of $\overline{\mathfrak{d}}_1,\dots,\overline{\mathfrak{d}}_r$ defined by setting $\tau x^* = \tau_1 x^* + \cdots + \tau_r x^*$, shall be called the canonical homomorphism of $\overline{\mathfrak{d}}$ into $\widetilde{\mathfrak{d}}$.

THEOREM I. Let v be a commutative ring with a unit element, and let m be an ideal in v such that $\bigcap m^n = (0)$. Suppose that

$$\mathfrak{m}=\mathfrak{m}_1 \wedge \cdots \wedge \mathfrak{m}_r$$
,

where m_i (i=1, 2, ..., r) are ideals in 0, such that $(m_i, m_j)=(1)$ for $i \neq j$. Then (with the same notations as in (D)), the canonical homomorphism τ is an isomorphism of $\overline{0}$ onto $\overline{0}$.

PROOF. We shall first prove that τ is a mapping on \tilde{o} . Let x_i^* be any element in \bar{o}_i , and let $x_i^* = \lim x_{\nu}^{\prime\prime} (x_{\nu}^{\prime\prime} \in o_i^{\prime\prime})$. Let x_{ν}^{\prime} be any element in the residue class $x_{\nu}^{\prime\prime}$, then there exists an element x_{ν} in \tilde{o} such that