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The object of this note is to give the complete information on the indecomposable
components of the completions of semi-local rings.

Let 0 be a commutative ring, and let m be an ideal in o such that )\ n':l‘m"':(O).
The metrisable, uniform structure, defined in o by adopting the set {m?; n=1,2, -}
as a fundamental system of neighbourhoods of zero, shall be called an m-adic
topology. If we give this topology to o, it becomes a topological ring and we shall
call thus topologized ring an m-adic ring.

The completion of an m-adic ring o shall be called an ti-adic completion of o,
and shall be denoted by 5. If we dendte by m® the adherence of m in b, the set
{me; 6=1,2, -~} is a fundamental system of neighbourhoods of zero in 5. If m has
a finite base, then we have m*=m°, and § is an f-adic ring. If moreover o has a unit
element, then m=md. If ois a Noetherian ring (that is, a commutative ring with
the maximal condition for ideals) with a unit element, so is § too.

DeriniTion (D). Let m, m; be ideals in o, such that mCm;, and /\ m?»=(0). Set
Nmyr=m;=, o/m==n, my/m==m,’, and let 5, 5; be the m-adic and the m,’-adic com-
pletion of o and o)/ respectively. Let x* be any element in 5, and let x*=limx,
(xx€0). Then if we denote by x’» the residue class modulb m;* which contains xu,
{#'»} is a Cauchy sequence in the my/-adic ring o/. If we denote by x** the limit
of {#'»} in b, then the mapping 7 : ¥ — 2** is clearly a homomorphism (that is, a
continuous ring-homomorphism) of 5 into 6. This shall be called the canonical
homomorphism of 5 into ;.

Now, let m; (=1, 2, -, #) be ideals in o such that m<Cm;, and define b;, 7; similarly
as oy, 7;. Then the mapping 7 of 5 into the direct sum ¥ of b, -,0r defined by
setting Ta¥=74*+ -~ +r,x%, shall be called the canonical homomorphism of b into b.

TueoreM 1. Let 0 be a commutative ring with a unit element, and let m be an
ideal in v such that N\ m»=(0). Suppose that

where w; (1=1,2, -, 7) are ideals in v, such that (n;, m;)=(1) for i>cj. Then (with
the same notations as in (D)), the canonical homomorphism T is an isomorphism of d
onto 1. ,

Proor. We shall first prove that = is a mapping on 5. Let x* be any element
in 5, and let x*=1lim# (& eo’). Let &', be any element in the residue class x,,
then there exists an element x, in o such that
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