A Theorem on the Unitary Groups over Rings

By

 $\tau_{\rm{max}}$

 ~ 100

 \sim

Takayuki Nôno

(Received July 24, 1953)

1. It is well known⁽¹⁾ that the unitary group $U(n, Q)$ over the sfield Q of quaternions is isomorphic to the intersection of the unitary group $U(2n, C)$ and the symplectic group $Sp(2n, C)$ over the field C of complex numbers. We shall extend this theorem for the unitary groups over rings with unit element and with an involution.

Let *R* be an arbitrary ring with unit element ϵ , and with an involution *I*, that is, a one-to-one mapping $\xi \rightarrow \xi I$ of R onto itself, distinct from the identity, such that $(\xi+\eta)^j = \xi^l + \eta^l$, $(\xi\eta)^j = \eta^l \xi^l$, and $(\xi^l)^j = \xi$. Let V_R be a right and left vector space over *R*; an hermitian form over V_R is a mapping $(x, y) \rightarrow f(x, y)$ of $V_R \times V_R$ into *R*, which for any *x*, is linear in *y*, and such that $f(y, x) = f(x, y)^I$. This implies that $f(x,y)$ is additive in *x* and such that $f(x\lambda, y)=\lambda^I f(x, y)$. And suppose that the form *f* is nondegenerate, or in other words that if $f(x, y) = 0$ for all $y \in V_R$, then $x=0$. A unitary transformation *u* of V_R is a one-to-one linear mapping of V_R onto itself such that $f(u(x),u(y))=f(x,y)$ identically, these transformations constitute the unitary group $U(V_R, f)$. As for these definitions, we followed J. Dieudonné⁽²⁾.

Let \tilde{R} be the ring, which is the 2-dimensional right and left vectot space over R having e_0 and e_1 as a basis; in which the multiplication is defined by (i) the distributive law, (ii) $e_0e_0=e_0$, $e_0e_1=e_1e_0=e_1$, $e_1e_1=e_0\mu$ ($\mu \in R$), and (iii) $e_0\alpha = \alpha e_0$, $e_1\alpha^* = \alpha e_1$ for every $\alpha \in R$, where the mapping $\alpha \rightarrow \alpha^*$ is a one-to-one mapping of *R* onto itself; and in which the involution **J** is defined by $e_0I = e_0$, $e_1I = e_1v$ ($v \in R$), and $\alpha J = \alpha^I$ for every $\alpha \in R$.

Moreover let $V_{\tilde{R}}$ be the extension of V_R for the extension \tilde{R} of R , then $V_{\tilde{R}}$ is the 2-dimensional right and left vector space over V_R having e_0 and e_1 as a basis. And suppose that $e_0x=xe_0$, $e_1x=x^*e_1$ for every $x \in V_R$, where the mapping $x \rightarrow x^*$ is a one-to-one mapping of V_R onto itself.

2. We shall consider the condition for the \tilde{R} stated in 1 to be a ring with an involution \boldsymbol{I} .

LEMMA 1. \tilde{R} is a ring, if and only if $\mu^* = \mu$ and $\mu \xi^{**} = \xi \mu$ for every $\xi \in R$.

PROOF. For the \tilde{R} stated in 1, the multiplication is defined by $(e_0 \xi_0 + e_1 \xi_1)(e_0 \eta_0)$ $+e_1\eta_1=e_0(\xi_0\eta_0+\mu\xi_1*\eta_1)+e_1(\xi_1\eta_0+\xi_0*\eta_1);$ and the axioms of ring, except for the

¹⁾ Cf. C. Chevalley, *Theory of Lie groups,* Princeton University Press, 1946, p. 22.

²⁾ J. Diedonne, *On the structure of unitary groups,* Trans. Amer. Math. Soc, vol. 72 (1952), p.367.