A Theorem on the Unitary Groups over Rings

By

Takayuki Nôno

(Received July 24, 1953)

1. It is well known⁽¹⁾ that the unitary group U(n, Q) over the sfield Q of quaternions is isomorphic to the intersection of the unitary group U(2n, C) and the symplectic group Sp(2n, C) over the field C of complex numbers. We shall extend this theorem for the unitary groups over rings with unit element and with an involution.

Let R be an arbitrary ring with unit element ε , and with an involution I, that is, a one-to-one mapping $\xi \rightarrow \xi^I$ of R onto itself, distinct from the identity, such that $(\xi+\eta)^I = \xi^I + \eta^I$, $(\xi\eta)^I = \eta^I \xi^I$, and $(\xi^I)^I = \xi$. Let V_R be a right and left vector space over R; an hermitian form over V_R is a mapping $(x,y) \rightarrow f(x,y)$ of $V_R \times V_R$ into R, which for any x, is linear in y, and such that $f(y,x) = f(x,y)^I$. This implies that f(x,y) is additive in x and such that $f(x\lambda, y) = \lambda^I f(x, y)$. And suppose that the form f is nondegenerate, or in other words that if f(x,y)=0 for all $y \in V_R$, then x=0. A unitary transformation u of V_R is a one-to-one linear mapping of V_R onto itself such that f(u(x), u(y)) = f(x, y) identically, these transformations constitute the unitary group $U(V_R, f)$. As for these definitions, we followed J. Dieudonné⁽²⁾.

Let \tilde{R} be the ring, which is the 2-dimensional right and left vectot space over R having e_0 and e_1 as a basis; in which the multiplication is defined by (i) the distributive law, (ii) $e_0e_0=e_0$, $e_0e_1=e_1e_0=e_1$, $e_1e_1=e_0\mu$ ($\mu \in R$), and (iii) $e_0\alpha=\alpha e_0$, $e_1\alpha^*=\alpha e_1$ for every $\alpha \in R$, where the mapping $\alpha \rightarrow \alpha^*$ is a one-to-one mapping of R onto itself; and in which the involution J is defined by $e_0J=e_0$, $e_1J=e_1\nu$ ($\nu \in R$), and $\alpha J=\alpha I$ for every $\alpha \in R$.

Moreover let $V_{\tilde{R}}$ be the extension of V_R for the extension \tilde{R} of R, then $V_{\tilde{R}}$ is the 2-dimensional right and left vector space over V_R having e_0 and e_1 as a basis. And suppose that $e_0x = xe_0$, $e_1x = x^*e_1$ for every $x \in V_R$, where the mapping $x \to x^*$ is a one-to-one mapping of V_R onto itself.

2. We shall consider the condition for the \tilde{R} stated in 1 to be a ring with an involution J.

LEMMA 1. \tilde{R} is a ring, if and only if $\mu^* = \mu$ and $\mu \xi^{**} = \xi \mu$ for every $\xi \in R$.

PROOF. For the \tilde{R} stated in 1, the multiplication is defined by $(e_0\xi_0+e_1\xi_1)(e_0\eta_0 + e_1\eta_1 = e_0(\xi_0\eta_0 + \mu\xi_1^*\eta_1) + e_1(\xi_1\eta_0 + \xi_0^*\eta_1)$; and the axioms of ring, except for the

¹⁾ Cf. C. Chevalley, Theory of Lie groups, Princeton University Press, 1946, p. 22.

²⁾ J. Diedonné, On the structure of unitary groups, Trans. Amer. Math. Soc. vol. 72 (1952), p. 367.