Iteration of Certain Finite Transformation (Continued).

By

Minoru Urabe

(Received Jan. 31, 1953)

Chapter II. Transformation of Type B.

§6. Condition I.

We consider the transformation of the form as follows:

$$
\begin{equation*}
T:^{\prime} x^{\nu}=\varphi^{\nu}(x)=x^{\nu}+a_{\lambda_{1} \cdots \lambda_{N}}^{\nu} x^{\lambda_{1} \cdots} x^{\lambda_{N}}+\cdots, \quad(N \geqq 3) \tag{6.1}
\end{equation*}
$$

where at least one of $a_{\lambda_{1} \ldots \lambda_{N}}^{\nu}$'s does not vanish.
Quite similarly as in § 1, we have
Theorem 1'. For the transformation (6.1), we put as follows:

$$
a_{\lambda_{1} \cdots \lambda_{N}}^{\nu}=R_{\lambda_{1} \cdots \lambda_{N}}^{\nu} e^{\prime \Omega_{\lambda_{1} \cdots \lambda_{N}}^{\nu}}, \quad{ }^{\prime} \Omega_{\lambda_{1} \cdots \lambda_{N}}^{\nu}+\omega_{\lambda_{1}}+\cdots+\omega_{\lambda_{N}}-\omega_{\nu}=\Omega_{\lambda_{1} \cdots \lambda_{N}}^{\nu} .
$$

We consider the function as follows:

$$
\begin{aligned}
R & =R(r, \omega ; \rho, \theta) \\
& =\sum_{\lambda_{1}, \cdots, \lambda_{N}, \nu} R_{\lambda_{1} \cdots \lambda_{N}}^{\nu} \sigma_{\lambda_{1}} \cdots \sigma_{\lambda_{N}} \rho_{\nu} \cos \left(\Omega_{\lambda_{1} \cdots \lambda_{N}}^{\nu}+\phi_{\lambda_{1}}+\cdots+\phi_{\lambda_{N}}-\theta_{\nu}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \sigma_{\lambda}=r_{\lambda} \text { or } \rho_{\lambda} \\
& \phi_{\lambda}=0 \text { or } \theta_{\lambda} \text { according as } \sigma_{\lambda}=r_{\lambda} \text { or } \sigma_{\lambda}=\rho_{\lambda} \\
& r_{\lambda}, \rho_{\lambda} \geq 0 \text { and } \sum_{\lambda} r_{\lambda}^{2}=\sum_{\lambda} \rho_{\lambda}^{2}=1
\end{aligned}
$$

We assume that there exists a set of $\left(\gamma_{\nu}, \omega_{\nu}\right)$ such that $R<0$ for all $\left(\rho_{\nu}, \theta_{\nu}\right)$ except for $\left(\rho_{\nu}=r_{\nu}, \theta_{\nu}=\pi\right)$, and that $\left[\frac{d^{P}}{d \varepsilon^{P}} R\left(r, \omega ; r_{\nu}+\varepsilon \eta_{\nu}, \pi+\varepsilon \varepsilon^{\nu}\right)\right]_{\varepsilon=0} \neq 0$ for any $\left(\eta_{\nu}, \varepsilon_{\nu}\right)$ such that $\left|\eta_{\nu}\right|,\left|\varepsilon_{\nu}\right| \leqq 1$ except for $\eta_{\nu}=\varepsilon_{\nu}=0$, where $P=N$ or $N+1$ according as N is even or odd. Then, in the space $E_{2 n}$ of the complex numbers $x^{\nu} s$, there exists a small hypersphere passing through the origin with the center $\alpha^{\nu}=r r_{\nu} e^{i \omega_{\nu}}$ and with the radius r, such that all the points of that hypersphere converge to the origin remaining in it when T is infinitely iterated on these points.

