On Lorentz Transformations and Continuity Equation of Angular Momentum in Relativistic Quantum Mechanics.

By
Takashi Shibata
(Received Aug. 18, 1954)

§1. Introduction and outlines.

In special relativity and relativistic quantum mechanics, the fundamental laws of mechanics are formulated so as they are form-invariant under the transformations of the general Lorentz group. The transformation of the Lorentz group is obtained by means of a suitable combination of spatial rotations of the axes of coordinates in two systems together with a special Lorentz transformation of the form:

$$
\begin{equation*}
x^{\prime}=\frac{x-u t}{\sqrt{1-u^{2} / c^{2}}}, \quad y^{\prime}=y, \quad z^{\prime}=z, \quad t^{\prime}=\frac{t-u x / c^{2}}{\sqrt{1-u^{2} / c^{2}}} \tag{1.1}
\end{equation*}
$$

where x, y, z, t and $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$ are space-time coordinates in two systems K and K^{\prime}, the uniform velocity of K^{\prime} relative to K being u along x-axis of K. The equations (1.1) represent the relations between the coordinates in K and K^{\prime} where the relative velocity of K^{\prime} to K is parallel to the x-axis. However, sometimes we shall need explicit expressions for the Lorentz transformations in a more general case where the relative velocity of K^{\prime} to K is not parallel to the x-axis and where the Cartesian axes in K and K^{\prime} have the same orientation (not arbitrary orientations relative to each other). Such a transformation is the so-called Lorentz transformation without rotation $[\mathbf{1}]^{*)}$. The explicit expression for such Lorentz transformation without rotation is given by the following vector form: [1]

$$
\begin{align*}
\boldsymbol{X}^{\prime} & =\boldsymbol{X}+\boldsymbol{U}\left[\frac{(\boldsymbol{U} \boldsymbol{X})}{u^{2}}\left\{\left(1-u^{2} / c^{2}\right)^{-\frac{1}{2}}-1\right\}-t\left(1-u^{2} / c^{2}\right)^{-\frac{1}{2}}\right] \tag{1.2}\\
t^{\prime} & =\left(1-u^{2} / c^{2}\right)^{-\frac{1}{2}}\left\{t-(\boldsymbol{U} \boldsymbol{X}) / c^{2}\right\}
\end{align*}
$$

where

$$
\boldsymbol{X}=(x, y, z), \quad \boldsymbol{X}^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right), \quad \boldsymbol{U}=\left(u^{1}, u^{2}, u^{3}\right)
$$

[^0]
[^0]: *) The ciphers in the square brackets refer to the Bibliography attached to the end of this paper.

