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Introduction 

Let g( (V) be the Lie algebra of all linear endomorphisms of a finite-dimensional 

vector space V over a field K of characteristic 0. An element X of g( ( V) is uniqel y 

expressed as X = S + N in such a way that S is• a semi-simple matrix, N is a nilpotent 

matrix and [S, NJ= 0. These S, N are called the semi-simple and nilpotent com

ponents of X respectively [5]. A Lie subalgebra g of gf (V) is called splittable [14] 

provided the components of every element of g also belong to g. E. g., completely 

reducible linear Lie algebras are splittable [13]. The main purpose of this paper 

1s to study the properties of splittable linear Lie algebras. 

Necessary and sufficient conditions for g to be splittable are given (Proposition 1). 

g is called algebraic [8, p. 171] if it is the Lie algebra of an algebraic group. Y 

E gf(V) is called a replica of XE g((V) [8, p. 180] if Y is contained in the Lie 

algebra of the smallest algebraic group whose Lie algebra contains X. Then g is 

algebraic if and only if every replica of any element of g also belongs to g [8, p. 181]. 

Since the components of any element XE g{(V) are replicas of X. [8, p. 181], every 

algebraic Lie algebra is splittable. It is known [7] that if r is algebraic, fJ is its 

radical and n is the ideal of all nilpotent matrices E f), then for any Levi decom

position p =0 + fJ of g there exists an abelian subalgebra a of semi-simple matrices 

E fJ such that fJ=n +a, nna=0, [0, a] =0. An analogue to this for splittable Lie 

algebras will be proved (Theorem 1). The smallest algebraic Lie algebra containing 

g is called the algebraic hull g* of g [7]. In like manner we define the splittable 

hµll *g of g. It is the smallest splittable Lie algebra containing g. We shall show 

that *g is the smallest Lie algebra containing g which has the same nilpotent matrices 

as g* (Theorem 2), and that if f is a Cartan subalgebra of g then *f (f*) is a 

Cartan subalgebra of *g (g*) (Proposition 5). Owing to a Cartan decomposition of 

g, M. Goto [10] showed that g* is the direct sum of g and an abelian subalgebra 

composed of semi-simple matrices. Without making use of a Cartan decomposition 

a simple proof of this result and its analogue for splittable case will be established 


