On Splittable Linear Lie Algebras

By

Shigeaki TÔGÔ

(Received August 6, 1954)

Introduction

Let $\mathfrak{gl}(V)$ be the Lie algebra of all linear endomorphisms of a finite-dimensional vector space V over a field K of characteristic 0. An element X of $\mathfrak{gl}(V)$ is uniquely expressed as X=S+N in such a way that S is a semi-simple matrix, N is a nilpotent matrix and [S, N]=0. These S, N are called the semi-simple and nilpotent components of X respectively [5]. A Lie subalgebra \mathfrak{g} of $\mathfrak{gl}(V)$ is called *splittable* [14] provided the components of every element of \mathfrak{g} also belong to \mathfrak{g} . E. g., completely reducible linear Lie algebras are splittable [13]. The main purpose of this paper is to study the properties of splittable linear Lie algebras.

Necessary and sufficient conditions for \mathfrak{g} to be splittable are given (Proposition 1). \mathfrak{g} is called algebraic [8, p. 171] if it is the Lie algebra of an algebraic group. Y $\in \mathfrak{ql}(V)$ is called a replica of $X \in \mathfrak{ql}(V)$ [8, p. 180] if Y is contained in the Lie algebra of the smallest algebraic group whose Lie algebra contains X. Then \mathfrak{g} is algebraic if and only if every replica of any element of g also belongs to g [8, p. 181]. Since the components of any element $X \in \mathfrak{gl}(V)$ are replicas of X. [8, p. 181], every algebraic Lie algebra is splittable. It is known [7] that if \mathfrak{g} is algebraic, \mathfrak{h} is its radical and \mathfrak{n} is the ideal of all nilpotent matrices $\in \mathfrak{h}$, then for any Levi decomposition $\mathfrak{g} = \mathfrak{s} + \mathfrak{h}$ of \mathfrak{g} there exists an abelian subalgebra \mathfrak{a} of semi-simple matrices $\in \mathfrak{h}$ such that $\mathfrak{h}=\mathfrak{n}+\mathfrak{a}$, $\mathfrak{n} \cap \mathfrak{a}=0$, $[\mathfrak{s},\mathfrak{a}]=0$. An analogue to this for splittable Lie algebras will be proved (Theorem 1). The smallest algebraic Lie algebra containing \mathfrak{g} is called the algebraic hull \mathfrak{g}^* of \mathfrak{g} [7]. In like manner we define the splittable hull *g of g. It is the smallest splittable Lie algebra containing g. We shall show that * \mathfrak{g} is the smallest Lie algebra containing \mathfrak{g} which has the same nilpotent matrices as \mathfrak{g}^* (Theorem 2), and that if \mathfrak{k} is a Cartan subalgebra of \mathfrak{g} then \mathfrak{k} (\mathfrak{k}^*) is a Cartan subalgebra of *g (g*) (Proposition 5). Owing to a Cartan decomposition of g, M. Gotô $\lfloor 10 \rfloor$ showed that g* is the direct sum of g and an abelian subalgebra composed of semi-simple matrices. Without making use of a Cartan decomposition a simple proof of this result and its analogue for splittable case will be established