A Note on Lattice Segment

By

Noboru NiSHIGORI

(Received May 27, 1954)
W. D. Duthie introduced the concept of a segment in a lattice and characterized the modularity and the distributivity of a lattice by it ${ }^{(1)}$. And M. Sholander has, from the axiomatic standpoint, investigated the segments and obtained the three axioms which characterize the segments of a distributive lattice with O and $I^{(2)}$.

The purpose of this paper is to generalize the M. Sholander's result and to obtain the axioms which characterize the segments of a lattice with O.

§ 1. Segment of a Lattice L.

In this section, we consider the properties of the segments of a lattice L.
Here, we use the definition of a segment which was used by W. D. Duthie, that is, for any pair a, b of the elements of a lattice L, the set of all elements $x \in L$ which satisfies the condition $a b \leqq x \leqq a+b$ is called the segment joining a and b, and is denoted by the symbol (a, b).

From the above definition of the segment, we have the following lemmas.

$$
\begin{equation*}
(a, b) \cup(c, d) \subset(a b c d, a+b+c+d) \tag{1.1}
\end{equation*}
$$

Proof. Suppose $x \in(a, b) \cup(c, d)$. Then element x satisfies the conditions $a b \leqq x \leqq a+b \quad$ or $\quad c d \leqq x \leqq c+d$. So, we have $a b c d \leqq x \leqq a+b+c+d$.

Note. Briefly, we write the set $(a b c d, a+b+c+d)$ by the symbol $(a, b) \stackrel{*}{\cup}(c, d)$.
(1.2) Let L be a lattice with $O .(a, b) \subset(p, q)$ if and only if $(O, a) \cap(O, b) \supset(O, p)$ $\cap(O, q)$ and $(O, a) * *(O, b) \subset(O, p) \stackrel{*}{\cup}(O, q)$.

Proof. First we prove the necessity. W.D.Duthie has shown that $(a, b) \cap(c, d)=$

[^0]
[^0]: 1) W. D. Duthie, "Segments of ordered sets," Trans. Am. Math. Soc. vol. 51 (1942) pp. 1-14.
 2) M. Sholander, "Tree, lattice, order and betweenness," Proc. Am. Math. Soc. vol. 3 (1952) pp. 369-381.
