On the Different Theorem in Complete Fields with Respect to a Discrete Valuation

By

Akira Kinohara
(Received March 20, 1954)
§ 1. Throughout this note we shall be dealing with finite separable extensions K of a field k which is complete under a discrete valuation. As usual, we shall denote by \mathfrak{D}, $\mathfrak{F}, \mathfrak{\Omega}$ and $\mathfrak{v}, \mathfrak{p}, \mathfrak{f}$ the rings of integers, prime ideals, and residue class fields in K and k, respectively. The trace from K to k will be denoted by S. Then the different $D(K / k)$ of K / k is defined as the inverse of \mathfrak{M} such that $\lambda \in \mathfrak{M} \Leftrightarrow S(\lambda \mathfrak{D}) \subset \mathbb{D}$.

In this note, we shall show a proof of the different theorem different from the usual one. ${ }^{1)}$
§ 2. Throughout this note, let $f(x)^{2)}$ be the canonical defining polynomial of $\theta \in \mathcal{D}$ in $\mathfrak{v}[x]$, and $f^{\prime}(x)$ the derivative of $f(x)$ with respect to x. Then, as is well known, the different $f^{\prime}(\theta)$ of θ is divisible by $D(K / k)$. In particular, if, for example, k, K are \mathfrak{p}-adic number fields, $D(K / k)$ is the greatest common divisor of $\left(f^{\prime}(\theta)\right)$ for all θ in \mathfrak{D}. But, in our case, it is not always true.

Lemma 1. The following three statements are equivalent:
A) $\mathfrak{D}=\mathfrak{D}[\theta]$
B) $D(K / k)=\left(f^{\prime}(\theta)\right)$
C) There exists an element $\eta \in \mathcal{D}$ whose residue class modulo \mathfrak{B} is a primitive element of Ω / \mathfrak{k} and one of the prime elements of \mathfrak{B} in \mathfrak{D} belongs to $\mathfrak{o}[\eta]$.
$P_{\text {roof. }}$ We have already proved ${ }^{3)}:(A) \Leftrightarrow B$). Here we shall show $\left.A\right) \Leftrightarrow C$. We may take an element θ which satisfies the conditions required in C) and is one of the primitive elements of K / k. Then, if $\left.[\Omega:]^{4}\right)=f$, we can choose $1, \theta, \cdots, \theta^{f-1}$ as a

[^0]
[^0]: 1) See: E. Artin, Algebraic Numbers and Algebraic Functions I, Princeton Univ. and New York Univ., 1950-1951, Chap. 5, The Different, Theorem 2.
 2) $f(x)$ is irreducible in $\mathfrak{D}[x]$ with the leading coefficient 1.
 3) See: A. Kinohara, A Note on the Relative 2-Dimensional Cohomology Group in Complete Fields with Respect to a Discrete Valuation, this Journal, 18, p. 2 (1954), Lemma 1.
 4) $[\Omega: \mathfrak{f}]$ denotes the degree of Ω / \mathfrak{f}.
