On the Different Theorem in Complete Fields with Respect to a Discrete Valuation

By

Akira KINOHARA

(Received March 20, 1954)

§ 1. Throughout this note we shall be dealing with finite separable extensions K of a field k which is complete under a discrete valuation. As usual, we shall denote by \mathfrak{D} , \mathfrak{P} , \mathfrak{R} and \mathfrak{v} , \mathfrak{p} , \mathfrak{k} the rings of integers, prime ideals, and residue class fields in K and k, respectively. The trace from K to k will be denoted by S. Then the different D(K/k) of K/k is defined as the inverse of \mathfrak{M} such that $\lambda \in \mathfrak{M} \Leftrightarrow S(\lambda \mathfrak{D}) \subset \mathfrak{o}$.

In this note, we shall show a proof of the different theorem different from the usual one.¹⁾

§ 2. Throughout this note, let $f(x)^{2}$ be the canonical defining polynomial of $\theta \in \mathfrak{O}$ in $\mathfrak{v}[x]$, and f'(x) the derivative of f(x) with respect to x. Then, as is well known, the different $f'(\theta)$ of θ is divisible by D(K/k). In particular, if, for example, k, K are \mathfrak{p} -adic number fields, D(K/k) is the greatest common divisor of $(f'(\theta))$ for all θ in \mathfrak{O} . But, in our case, it is not always true.

LEMMA 1. The following three statements are equivalent:

- A) $\mathfrak{D} = \mathfrak{o} \left[\theta \right]$
- B) $D(K/k) = (f'(\theta))$

C) There exists an element $\eta \in \mathfrak{O}$ whose residue class modulo \mathfrak{P} is a primitive element of $\mathfrak{R}/\mathfrak{k}$ and one of the prime elements of \mathfrak{P} in \mathfrak{O} belongs to $\mathfrak{o}[\eta]$.

PROOF. We have already proved³: A) \Leftrightarrow B). Here we shall show A) \Leftrightarrow C). We may take an element θ which satisfies the conditions required in C) and is one of the primitive elements of K/k. Then, if $[\Re: t]^{4} = f$, we can choose 1, θ , \cdots , θ^{f-1} as a

¹⁾ See: E. Artin, Algebraic Numbers and Algebraic Functions I, Princeton Univ. and New York Univ., 1950–1951, Chap. 5, The Different, Theorem 2.

²⁾ f(x) is irreducible in $\mathfrak{p}[x]$ with the leading coefficient 1.

³⁾ See: A. Kinohara, A Note on the Relative 2-Dimensional Cohomology Group in Complete Fields with Respect to a Discrete Valuation, this Journal, 18, p.2 (1954), Lemma 1.

⁴⁾ $[\Re: f]$ denotes the degree of \Re/f .