

JOURNAL OF SCIENCE OF THE HIROSHIMA UNIVERSITY, SER. A, VOL. 18, NO. 1, JUNE, 1954

Note on the Relative 2-Dimensional Cohomology Group in Complete Fields with Respect to a Discrete Valuation¹⁾

By

Akira KINOHARA

(Received January 31, 1954)

§ 1. Introduction

Let k, K $(k \in K)$ be p-adic number fields, and $\mathfrak{o}, \mathfrak{O}$ its valuation ring respectively, and $\mathfrak{p}, \mathfrak{P}$ its prime ideal respectively. Let D be the relative different of K/k. Then Prof. Y. Kawada²⁾ has proved the following relations with respect to the relative 2-dimensional cohomology group:

(*)
$$\begin{array}{c} H(\mathfrak{D}, \mathfrak{o}; \mathfrak{D}/\mathfrak{P}') \cong \mathfrak{D}/\mathfrak{P}' \quad \text{for} \quad \mathfrak{P}' \supseteq D \\ H(\mathfrak{D}, \mathfrak{o}; \mathfrak{D}/\mathfrak{P}') \cong \mathfrak{D}/D \quad \text{for} \quad \mathfrak{P}' \subseteq D. \end{array}$$

Now let k be a complete field (with respect to a discrete valuation) of such a quotient field as, in its integral domains, the fundamental theorem of the multiplicative ideal theory holds. Let K be a separable extension of finite degree over k. Let v, \mathfrak{D} be its valuation ring respectively, and \mathfrak{p} , \mathfrak{P} its prime ideal respectively. Let D be the relative different of K/k.

Our aim is to prove that (*) relation is satisfied in the case of $\mathfrak{D} = \mathfrak{o}[\theta]$, and that, using this fact, we can give a definition of the relative different of K/k different from the usual one.

In the case of p-adic number fields,³⁾ let K' be the inertia field of K/k, and $\mathfrak{D} \cap K' = \mathfrak{D}'$. Then $\mathfrak{D}' = \mathfrak{o}[\zeta]$, and, moreover, since the number of the elements of the residue class field of K by \mathfrak{P} is finite, we can take ζ such that $\zeta^{|N(\mathfrak{P})|^{-1}} = 1$ where $|N(\mathfrak{P})|$ is the absolute value of the absolute norm of \mathfrak{P} . In addition, we can set $\mathfrak{D} = \mathfrak{D}'[H]$ where H is a prime element of \mathfrak{P} in \mathfrak{D} . These two facts are essentially utilized for the proof of (*) relation, but, in our case, they are not always true.

¹⁾ This note has been completed by the encouragement of Prof. M. Moriya. The author wishes to express here his hearty thanks to Prof. M. Moriya for his kindness.

²⁾ Y. Kawada: On the derivations in number fields, Annals of Math. 54 (1951), pp. 310-314.

³⁾ Y. Kawada, 1. c.