JOURNAL OF SCIENCE OF THE HIROSHIMA UNIVERSITY, SER. A, VOL. 19, NO. 3, JANUARY, 1956

On Some Properties of Non-Compact Peano Spaces

By

Akira TOMINAGA

(Received Oct. 25, 1955)

Introduction

By a Peano space we mean a locally compact, locally connected, separable metric space. If a Peano space is compact, it is called a continuous curve or Peano continuum. In §1 we shall introduce the notion "degree of a Peano space", and in §2 we shall consider characterization of non-compactness for Peano spaces by half-open or open arcs, closed in the spaces. A metric space R will be called convex provided it has a convex metric $\rho(x, y)$, that is, for each pair of points p, q in R, there exists a point r such that $\rho(p, r) = \rho(r, q) = \rho(p, q)/2$. R. H. Bing and E. E. Moise proved independently that each continuous curve has a convex metric ([1], [5]). We have shown that there exists a convex metric in each Peano space ([8]). However, the metric defined in [8] is complete but not bounded. We shall show that there exists a bounded convex metric in each Peano space (in §4).

We know several compactings of non-compact spaces. In §5 we shall consider a property of the socalled Freudenthal's compacting. In the last section the problem of extension of metric will be treated.

1. Degree of Peano spaces.

We shall recall that each locally compact Hausdorff space R has a compacting by adding a new point ξ ; we denote the associated compact space by $R^* = R + \xi$, and then define the closure operator —* in R^* as follows:

> $\overline{M}^* = \overline{M}$: if $M \ni \xi$ and \overline{M} is compact, $\overline{M}^* = \overline{M} + \xi$: if $M \ni \xi$ and \overline{M} is not compact and $\overline{M}^* = (\overline{M-\xi}) + \xi$: if $M \ni \xi$.

Hence each open set of R^* is either an open set of R or $R^* - F$, where F