JOURNAL OF SCIENCE OF THE HIROSHIMA UNIVERSITY, SER. A, VOL. 19, No. 2, NOVEMBER, 1955

Extension of *b*-Application to Unbounded Operators

Вy

Tôzirô OGASAWARA and Kyôichi YOSHINAGA

(Received June 6, 1955)

In the previous paper [13], the present authors developed the so-called "noncommutative theory" of integration for rings of operators from a point of view resumed as follows. Every semi-finite ring of operators M with a normal, faithful and essential pseudo-trace m is normally *-isomorphic to the left ring L of an *H*-system H such that m corresponds to the canonical pseudo-trace of H [13]. We have shown that this *-isomorphism can be uniquely extended to a *-isomorphic mapping between the sets of measurable operators with respect to Mand L respectively. Thus the theory of integration for M can be reduced to that for L. But in H the set of all square-integrable measurable operators is given a priori, basing on which our whole theory was built.

In his investigation on $\not\models$ -applications in a ring of operators, Dixmier has shown ([4], Theorem 3) that every normal, faithful and essential pseudo-trace defined on a semi-finite ring **M** has the form $m(A) = \varphi(A^{\dagger})$, where $\not\models$ is a fixed normal, faithful and essential pseudo- $\not\models$ -application defined on \mathbf{M}^+ and φ is a normal, faithful and essential pseudo- $\not\models$ -application defined on \mathbf{M}^+ and φ is a normal, faithful and essential pseudo-measure on the spectre \mathcal{Q} of the center \mathbf{M}^{\dagger} . This leads us to another formulation of the theory, which is divided into two parts : the classical theory of pseudo-measure on the spectre \mathcal{Q} of \mathbf{M}^{\dagger} and the extension of $\not\models$ -application to unbounded operators $\eta \mathbf{M}$. The main purpose of this paper is to develop this theory of extension. The pseudo- $\not\models$ -application defined on \mathbf{M}^+ , $\mathbf{M}^+ \ni A \rightarrow A^{\dagger} \in \mathbf{Z}$, will be extended over the set of all positive, closed, densely defined operators $T\eta \mathbf{M}$, $T \rightarrow T^{\dagger} \in \mathbf{Z}$,

$$\begin{aligned} (\natural) \qquad \qquad T^{\dagger} &= 1. \text{ u. b. } A^{\dagger}. \\ \mathbf{M}^{+} \ni A \leq T \end{aligned}$$

If we wish the integral of T to be finite, T^{*} must be finite except on a nowhere dense subset of \mathcal{Q} . Such a T will be measurable in the sense of Segal ([15], [13]) and the set of all such T forms the positive part of an invariant linear system \mathfrak{S} , which will play a fundamental rôle in our present theory.

§1 is devoted to the proof of a theorem concerning the least upper bound of an increasing directed set $\{T_{\delta}\}$ of positive, closed and densely defined operators