Note on a Simple Closed Curve Bounding a Pseudo-Projective Plane

Akira Tominaga
(Received May 20, 1960)

Introduction

A 3-manifold is a separable metric space each of whose points has a closed neighbourhood homeomorphic to a 3 -cell. Hereafter we do not assume any conditions about connectedness, compactness, orientability and boundary for 3 -manifolds except for Corollary 2 in Section 1 . Any 3-manifold to be considered in the following is supposed without loss of generality to have a fixed triangulation. Moreover, every thing will be considered from the semi-linear point of view. For example, mappings are semi-linear, curves are polygonal and surfaces are polyhedral, and so on.

Let m be a positive integer and let P be a disc in euclidean plane E^{2} which is mapped onto itself by each rotation r_{a} in E^{2} defined by the equations:

$$
\begin{aligned}
& x^{\prime}=x \cos \left(\frac{a}{m} \cdot 2 \pi\right)-y \sin \left(\frac{a}{m} \cdot 2 \pi\right), \\
& y^{\prime}=x \sin \left(\frac{a}{m} \cdot 2 \pi\right)+y \cos \left(\frac{a}{m} \cdot 2 \pi\right)
\end{aligned}
$$

Then if we identify each pair of points p, p^{\prime} on ${ }^{(1)} \mathrm{Bd} P$ such that $r_{a}(p)=r_{a^{\prime}}\left(p^{\prime}\right)$ for some a, a^{\prime}, we have from P a regular connected 2 -dimensional polyhedron P_{m}, called a pseudo-projective plane, cf. 〔1〕 p. 266. In particular P_{1} is a disc and P_{2} is a projective plane. The above identification defines a mapping f of P onto P_{m} in a natural way. Then the set $f(\mathrm{Bd} P)$ is a simple closed curve L in P_{m} and is called a boundary curve of P_{m}.

In the previous paper [5], we gave a necessary and sufficient condition that a simple closed curve in a 3 -manifold M bounds a disc in M. We now show in this note a property of a boundary curve L of P_{m} in M (Theorem 1) and give a condition that $L \subset M$ should be a boundary curve of $P_{m} \subset M$ (Theorem 2). We shall make use of the method of diagrams in proving these theorems. Furthermore at the end of this note, a remark for [5] will be added.

1. Pseudo-projective planes

First we indicate several definitions for diagrams. Let D be a singular
(1) Bd means boundary.

