On Relatively Semi-orthocomplemented Lattices

Shûichirô Maeda

(Received May 20, 1960)

A complete lattice L is called a Z-lattice if its center Z is a complete (Boolean) sublattice of L and $\bigcup(a_{\alpha}; \alpha \in I) \cap b = \bigcup(a_{\alpha} \cap b; \alpha \in I)$ holds when $a_{\alpha} \in Z$ for every $\alpha \in I$ or $b \in Z$ (F. Maeda [4], Definition 1.1). If a complete lattice L has a binary relation " \perp " which satisfies the six axioms $(1, \alpha)$ — $(1, \zeta)$ introduced in my previous paper [5], then it is a Z-lattice (see Theorem 1.3 and Lemma 1.3 of [5]). In this paper, it will be proved that the axiom $(1, \varepsilon)$ is unnecessary for the proof that L is a Z-lattice. A lattice with 0, 1 (not necessarily complete) which has a binary relation " \perp " satisfying these five axioms except $(1, \varepsilon)$ will be called to be relatively semi-orthocomplemented. Then, the above statement means that a relatively semi-orthocomplemented complete lattice is a Z-lattice. This is the main theorem of this paper.

We shall show that relatively orthocomplemented lattices and complemented modular lattices are relatively semi-orthocomplemented lattices with some special properties. Moreover, we shall show that, in a ring A with unity, if the set $R_I(A)$ of all principal right ideals generated by idempotents of A forms a lattice by set-inclusion, then it is a relatively semi-orthocomplemented lattice; especially that if A is a Baer ring, then $R_I(A)$, equal to the set of all rightannihilators, is a relatively semi-orthocomplemented complete lattice.

Our main theorem includes the following theorems as special cases: Theorem 2 of Loomis [3], on a relatively orthocomplemented complete lattice (see [4], Remark 4.3); Theorem 5 of Kaplansky [1], on a complemented modular complete lattice; Theorem 5.3 of F. Maeda [4], on a lattice of the annihilators of a Baer ring.

1. Definitions and examples. We assume that, in a lattice L with 0, there is a binary relation " \perp " which satisfies the following axioms:

$(\perp 1)$	$a ot a implies a \!=\! 0 \;;$
$(\perp 2)$	a ot b implies $b ot a$;
(± 3)	$a \bot b, a_1 \underline{\leq} a imply a_1 \bot b;$
(⊥4)	a ot b, a ot b ot c imply a ot b ot c.

These axioms coincide with $(1, \alpha)$, $(1, \beta)$, $(1, \gamma)$ and $(1, \delta)$ in [5, §1] respectively. It is obvious by (± 1) , (± 2) and (± 3) that $a \pm b$ implies $a \cap b = 0$. Two elements $a, b \in L$ are called to be *semi-orthogonal* when $a \pm b$. L is called to be *semi-orthogonal when* $a \pm b$. L is called to be *semi-orthogonal when* $a \pm b$. L is called to be *semi-orthogonal when* $a \pm b$. L is called to be *semi-orthogonal* when $a \pm b$. L is called to be *semi-orthogonal* when $a \pm b$. L is called to be *semi-orthogonal* when $a \pm b$. L is called to be *semi-orthogonal* when $a \pm b$.