JOURNAL OF SCIENCE OF THE HIROSHIMA UNIVERSITY, SER. A, VOL. 22, NO. 3, DECEMBER 1958

On the Nonlinear Autonomous System Admitting of a Family of Periodic Solutions near its Certain Periodic Solution

By

Minoru URABE

(Received September, 20, 1958)

1. Introduction

Let

(1.1)
$$\frac{dy}{dt} = Y(y)$$

be a given nonlinear autonomous system, where $Y(y) \in C_y^2$ in a domain G of the phase (n+1)-space \mathbb{R}^{n+1} . Here, of course, y and Y are the (n+1)dimensional vectors. In the sequel, let us call the independent variable t the *time*.

In this paper, we consider the case where, in a domain G, the system (1.1) admits of a family \mathfrak{F} of closed paths in the neighborhood of its certain closed path

$$C_0: y = \psi(t).$$

According to the nomenclature of the preceding paper $[5]^{10}$, the system (1.1) is called respectively the *fully* or the *partially oscillatory* system according as the family \mathfrak{F} consists of whole paths or of a portion of them lying near C_0 . In either case, according to [5], we assume that, when $n \geq 2$, the periods of the closed paths belonging to \mathfrak{F} are bounded. Then, by 4.1 of [5], there exist the *universal periods* for paths belonging to \mathfrak{F} such that they are continuous at C_0 . Let us denote such a universal period of C_0 by ω_0 .

According to [5], we make use of a moving orthonormal system along C_0 . Let ξ_i 's $(i=1, 2, \dots, n)$ be the normal unit vectors of a moving orthonormal system along C_0 such that $\xi_i(t) \in C_i^3$. Then, with respect to this moving orthonormal system, any path C lying near C_0 is represented as

(1.2)
$$y = \psi(t) + \sum_{i=1}^{n} x^{i} \xi_{i}$$

and the time variable τ along C and the *n*-dimensional vector $x=(x^i)$ are determined respectively by the differential equations

(1.3)
$$\frac{d\tau}{dt} = \frac{||Y||^2 + \sum_{i=1}^{n} x^i Y^* \dot{\xi}_i}{Y^* Y'}^{2^i}$$

¹⁾ Numbers in brackets refer to the references listed at the end of the paper.

²⁾ ||Y|| denotes the Euclidean norm of Y. The dots above the letters denote differentiation with respect to t. The symbol * denotes the transposed.