On the Exchange Formula for Distributions

By

Yukio HIRATA and Hayao OGATA

(Received September 20, 1958)

Let \mathbb{R}^n denote the *n*-dimensional Eulcidean space with points $x=(x_1, x_2, \cdots, x_n)$. The theory of Fourier transform of temperate distributions (elements of the space (\mathcal{G}')) on \mathbb{R}^n has been developed by L. Schwartz [3]. The Fourier transform of any temperate distribution is defined as another temperate distribution. For any distribution $S \in (\mathcal{G}')$ the Fourier and inverse Fourier transforms of S are denoted by $\mathcal{F}(S)$ and $\overline{\mathcal{F}}(S)$ respectively. Let $\{\rho_k\}$ and $\{\rho'_k\}$ be any sequences of regularizations and let $r_k = \overline{\mathcal{F}}(\rho_k)$. Now let S and T be any two distributions of (\mathcal{G}') such that S * T is defined and belongs to (\mathcal{G}') . $r_k T$ is an element of (\mathcal{O}'_c) since r_k belongs to (\mathcal{G}) . Owing to the basic exchange formula due to L. Schwartz [3], we have $\mathcal{F}(S*(r_kT)) = \mathcal{F}(S) \cdot (\mathcal{F}(T)*\rho_k)$. It follows then as noted by \mathbb{R} . E. Edwards [2] that the exchange formula

(1) $\mathcal{F}(S * T) = \mathcal{F}(S) \cdot \mathcal{F}(T)$

holds under the following conditions:

(a) $S*(r_kT)$ converges to S*T in (\mathcal{G}') as $k \to \infty$

(β) $\mathcal{F}(S) \cdot \mathcal{F}(T)$ is defined and $\mathcal{F}(S) \cdot (\mathcal{F}(T) * \rho_k)$ converges to $\mathcal{F}(S) \cdot \mathcal{F}(T)$ in (\mathcal{D}') as $k \to \infty$.

Our present purpose of this paper is to eliminate, in a certain sense, the two conditions (α) and (β) in the above statement. To this end we first introduce the concept of (\mathcal{G}') -convolution S * T (§1). We show that if S * Tis defined, then it belongs to (\mathcal{G}') and coincides with the ordinary convolution in the sense of C. Chevalley [1]. Secondly we propose to define the muliplicative product $A \cdot B$ of two distributions A, B as the common limit of sequence $(A * \rho_k)B$ and $A(B * \rho'_k)$ in (\mathcal{D}') as $k \to \infty$ provided these limits exist and coincide. In §2 we show that if, for any two distributions $S, T \in (\mathcal{G}')$, the (\mathcal{G}') -convolution S(*)T is defined, then the exchange formula (1) holds.

Concerning distributions, we adopt the notations of L. Shwartz [3] unless otherwise specifically mentioned.

1. Let S and T be any two distributions. Following C. Chevalley [1] we say that the convolution S * T is defined if the following condition is satisfied:

(*) $(S * \varphi) \cdot (\check{T} * \psi)$ belongs to L for any $\varphi, \psi \in (\mathcal{D})$,