Note on the Paper "On the Singularity of General Linear Groups"

By
Takayuki Nôno

(Received Sept. 26, 1957)
§1. Introduction. Let G be a connected Lie group and let (5) be its Lie algebra, then there exists an analytic mapping, which is called the exponential mapping, of the analytic manifold ${ }^{(58}$ into the analytic manifold G. The differential of the exponential mapping at an element A of \mathscr{F} is an endomorphism $\chi(A)$ of \mathscr{S}^{5} :

$$
A \rightarrow \chi(A)=(\exp (-\operatorname{ad} A)-I) /-\operatorname{ad} A
$$

where $(\exp (-\operatorname{ad} A)-I) /-\operatorname{ad} A=\sum_{1}^{\infty}(-\operatorname{ad} A)^{m-1} / m!$ and $\operatorname{ad} A \cdot W=[A, W]$ ($[2]^{1)}, \mathrm{p} .157$). The endomorphism $\chi(A)$ has an inverse, if and only if ad A has no eigen values such as $2 l \pi \sqrt{-1}$ (l : non-zero integers). In the previous paper "On the Singularity of General Linear Groups" ([4]), the proof of Theorem 1, which asserts that the exponential mapping is locally homeomorphic at A, if and only if $\chi(A)$ has an inverse, is unsatisfactory for the following reason. Since $\chi(A)$ is the Jacobian at A of the exponential mapping, it is clear that if $\chi(A)$ has an inverse, then the exponential mapping is locally homeomorphic at A. For the case of the complex Lie groups, from the theorem concerning the Jacobian in several complex variables ([1], p. 179), it is deduced that if $\chi(A)$ has no inverse, then the exponential mapping is not locally homeomorphic at A. But, for the case of the real Lie groups, this argument is not available. In $\S 2$ of this note we shall complete the proof of this assertion (Theorem 1), and in $\S 3$ we shall make clear the correspondence, by the exponential mapping, between the neighborhoods A and $\exp A$ respectively.
§2. Let $\mathfrak{C}_{\mathfrak{G}}(A)$ denote the centralizer of A in $\mathscr{C b}$:

$$
\mathfrak{C}_{\mathfrak{G}}(A)=\{X ; X \in \mathscr{S}, \operatorname{ad} A \cdot X=0\},
$$

and let $\mathfrak{C}_{\mathfrak{G}}(\exp A)=\{X ; X \in \mathscr{G}$, $\exp \operatorname{ad} A \cdot X=X\}$. In this section we shall prove the following theorem.

Theorem 1. The following conditions are mutually equivalent:
(1) The endomorphism $\chi(A)$ of (5) has an inverse.
(2) The exponential mapping of $(5$ into G is locally homeomorphic at A.
(3) $\mathfrak{G}_{\mathfrak{G}}(A)=\mathfrak{C}_{\mathfrak{G}}(\exp A)$.

[^0]
[^0]: 1) Numbers in brackets refer to the references at the end of the paper.
