A Note on Principal Ideals

By

Hazimu Satô

(Received April 25, 1957)

In his paper ([1], §9) M. Nagata proved the following interesting properties concerning prime ideals of principal ideals of Noetherian integral domains: (1) Let R be a Noetherian integral domain and \mathfrak{p} a prime ideal of R. Then, if \mathfrak{p} is a prime ideal of $a R$ where a is a non zero element of \mathfrak{p}, \mathfrak{p} is also a prime ideal of $b R$ for any non zero element b of \mathfrak{p}. (2) Let R be a local domain with maximal ideal \mathfrak{m}, a be a non zero element of \mathfrak{m}, and b be an element of $a R: m$. When R is of dimension 1 , it is assumed that a is irreducible and that $a R: \mathfrak{m} \neq R$. Then b is integral over $a R$.

These theorems played important roles in his proof of the following theorem: The derived normal ring of a Noetherian integral domain is a Krull ring. The purpose of this note is to give a simple proof of these theorems in the more general case when R is a Noetherian ring ([2], §4). Our proof is based on the following fact: In a Noetherian ring, a prime ideal \mathfrak{p} is a prime ideal of an ideal \mathfrak{a} if and only if $\mathfrak{p}=\mathfrak{a}:(p)$ for some $p \notin \mathfrak{a}$.

We shall now begin with

Lemma 1. Let R be a commutative ring and let a, b, c, d be elements of R. Assume that a is a non zero divisor, then, if $a d=b c, a R: b R \subseteq c R: d R$.

Proof. Let x be any element of $a R: b R$, then $a y=b x(y \in R)$; hence $a y c=b x c=a x d$; since a is a non zero divisor, we have $c y=d x$; that is, $x \in c R: d R$.

Remark. If R is an integral domain and a, c non zero elements, then, from $a d=b c$, it follows that $a R: b R=c R: d R$.

Hereafter R will always denote a Noetherian ring.
Proposition 1. Let \mathfrak{p} be a prime ideal (isolated or embedded) of aR where a is a non zero divisor of R. Assume that c is a non zero divisor of R which belongs to \mathfrak{p}, then \mathfrak{p} is also a prime ideal (isolated or embedded) of $c R$ ([2], Lemma 2, p. 299).

Proof. Since \mathfrak{p} is a prime ideal of $a R, \mathfrak{p}=a R: b R$ for some $b \notin a R$; hence $c b=a d(d \in R)$; consequently, from Lemma $1, \mathfrak{p}=a R: b R=c R: d R$, and

