# On the Branches of Logarithmic Function of a Matrix Variable 

By
Takayuki Nôno
(Received Jan. 25, 1957)

## § 1. Introduction

Let $\mathfrak{H}$ be the space of all the complex matrices of degree $n$ with the usual topology, $\mathfrak{M}$ the subspace of $\mathfrak{A}$ which is composed of all the regular matrices of degree $n$, and then we shall consider the exponential mapping: $W \rightarrow Z=\exp W$ from $\mathfrak{A}$ onto $\mathfrak{R}$, by $\mathfrak{R}(M)$ we shall denote the complete inverse image of $M$ of this mapping, i.e., $\mathcal{R}(M)=\{A$; $\exp A=M\}$, and by $\mathfrak{H}^{\circ}$ we shall denote the maximal subspace of $\mathfrak{H}$ for which the mapping: $W \rightarrow$ $Z=\exp W$ from $\mathfrak{U}$ onto $\mathfrak{M}$ is locally homeomorphic. And moreover we shall set $\mathfrak{A}^{s}=\mathfrak{A}-\mathfrak{H}^{\circ}$ (the complement of $\mathfrak{H}^{\circ}$ with respect to $\left.\mathfrak{H}\right), \mathfrak{M}^{s}=\exp \mathfrak{A}^{s}$ and $\mathfrak{m}^{\circ}=\mathfrak{M}-\mathfrak{M}^{s}$.

In the previous paper ([3]) ${ }^{1)}$ we have written the following facts:
(1) $\mathfrak{H}^{\circ}$ is the subspace of $\mathfrak{H}$ composed of all the matrices whose characteristic roots $\lambda_{i}$ do not satisfy the condition: $\lambda_{i}-\lambda_{j}=2 l \pi V-1$ ( $l$ : nonzero integer) ([3], Theorem 3).
(2) $\mathfrak{M}^{\circ}$ is the subspace of $\mathfrak{M}$ composed of all the matrices whose minimal polynomials are of degree $n$, this condition is equivalent to $\operatorname{dim} \mathscr{G}(M)=n$ where $\mathscr{G}(M)$ means the set of all the matrices commutative with $M$.
(3) $A \in \mathfrak{C}(M) \frown \mathfrak{H}^{\circ}$, if and only if $\mathfrak{C}(A)=\mathscr{C}(M)$ ([3], Theorem 5).
(4) $\mathfrak{H}^{\circ}$ is open and dense in $\mathfrak{H}$, and is arc-wise connected, but is not simply connected.

For a fixed matrix $M$ of $\mathfrak{M}$, the set $\mathcal{R}(M)$ has been already considered in the previous papers ([1], [2] and [3]). In this paper we shall consider the set $\mathfrak{R}(Z)$ for a variable matrix $Z$ of $\mathfrak{M}$, and by making use of the correspondence between the arcs in $\mathfrak{H}$ and the arcs in $\mathfrak{M}$ under the exponential mapping we shall investigate the behavior of the points of $\mathfrak{L}(Z)$ for $Z$ moving along arcs.

[^0]
[^0]:    1) Numbers in brackets refer to the references at the end of the paper.
