On the Branches of Logarithmic Function of a Matrix Variable

By

Takayuki Nôno

(Received Jan. 25, 1957)

§1. Introduction

Let \mathfrak{A} be the space of all the complex matrices of degree n with the usual topology, \mathfrak{M} the subspace of \mathfrak{A} which is composed of all the regular matrices of degree n, and then we shall consider the exponential mapping: $W \rightarrow Z = \exp W$ from \mathfrak{A} onto \mathfrak{M} , by $\mathfrak{L}(M)$ we shall denote the complete inverse image of M of this mapping, i.e., $\mathfrak{L}(M) = \{A; \exp A = M\}$, and by \mathfrak{A}° we shall denote the maximal subspace of \mathfrak{A} for which the mapping: $W \rightarrow Z = \exp W$ from \mathfrak{A} onto \mathfrak{M} is locally homeomorphic. And moreover we shall set $\mathfrak{A}^s = \mathfrak{A} - \mathfrak{A}^{\circ}$ (the complement of \mathfrak{A}° with respect to \mathfrak{A}), $\mathfrak{M}^s = \exp \mathfrak{A}^s$ and $\mathfrak{M}^{\circ} = \mathfrak{M} - \mathfrak{M}^s$.

In the previous paper $([3])^{1}$ we have written the following facts:

(1) \mathfrak{N}° is the subspace of \mathfrak{N} composed of all the matrices whose characteristic roots λ_i do not satisfy the condition: $\lambda_i - \lambda_j = 2l\pi \nu' - 1$ (*l*: non-zero integer) ([3], Theorem 3).

(2) \mathfrak{M}° is the subspace of \mathfrak{M} composed of all the matrices whose minimal polynomials are of degree n, this condition is equivalent to $\dim \mathfrak{S}(M) = n$ where $\mathfrak{S}(M)$ means the set of all the matrices commutative with M.

(3) $A \in \mathfrak{C}(M) \cap \mathfrak{A}^{\circ}$, if and only if $\mathfrak{C}(A) = \mathfrak{C}(M)$ ([3], Theorem 5).

(4) \mathfrak{A}° is open and dense in \mathfrak{A} , and is arc-wise connected, but is not simply connected.

For a fixed matrix M of \mathfrak{M} , the set $\mathfrak{L}(M)$ has been already considered in the previous papers ([1], [2] and [3]). In this paper we shall consider the set $\mathfrak{L}(Z)$ for a variable matrix Z of \mathfrak{M} , and by making use of the correspondence between the arcs in \mathfrak{N} and the arcs in \mathfrak{M} under the exponential mapping we shall investigate the behavior of the points of $\mathfrak{L}(Z)$ for Z moving along arcs.

¹⁾ Numbers in brackets refer to the references at the end of the paper.