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§1. Introduction

Let G be a Lie group, @ its Lie algebra, then there exists the exponential
mapping from & into G:X-— exp X, and this mapping is locally homeo-
morphic at the zero element O of &. When the exponential mapping:
X— exp X is not locally homeomorphic at X,¢®, X, is called a singular
point of &. And a set {exptX; t real} is called a path through the unit
element E of G. '

In this paper we shall investigate the path-structure and its singularity
of exp®, where exp® means the image of the exponential mapping:
expB=1{exp X; Xe®}. Let R and C be the fields of real numbers and
complex numbers respectively. In §2, we have a general consideration
concerning the singularity of Lie groups, and in §§3 and 4, from our stand-
point we shall consider the path-structure and its singularity of the complex
general linear group GL(n,C) and the real general linear group GL(n, R)
respectively.

§2. The singularity of Lie groups

Let G be a Lie group, & its Lie algebra, and X,(¢=1,2,---,r) be a base
of . Then any element x, of exp® is expressed by z,=exp > ziX;, and any
element x of ® in a sufficiently small neighborhood of x, is expressed by
r=exp > v'X; exp 3 2iX,, where |v'|(1=1,2,-- -, r) are sufficiently small. The
exponential mapping: S1#'X,—> exp > 2'X, is locally homeomorphic at
X,=>":X,, if and only if there exist two neighborhoods Ul and B of O in
& which are homeomorphic by the correspondence S1u‘X; el >1v'X;eB
such that

2.1) exp > (@i+uh)X,=exp D v' X, exp > % X,.
(2.1) is written as :

(2.2) exp > (x5 +u')z, exp (— S @i X,)=exp 21v'X,.
From (2.2) we have ([1], p. 156)"

2.3) v'=31J(@o)u' =3 ((exp C(w,) — B)/Clao)iw,

1) Numbers in brackets refer to the references at the end of the paper.



