On the Singularity of General Linear Groups

By

Takayuki Nôno

(Received Sept. 25, 1956)

§1. Introduction

Let G be a Lie group, \mathfrak{G} its Lie algebra, then there exists the exponential mapping from \mathfrak{G} into $G: X \to \exp X$, and this mapping is locally homeomorphic at the zero element O of \mathfrak{G} . When the exponential mapping: $X \to \exp X$ is not locally homeomorphic at $X_0 \in \mathfrak{G}$, X_0 is called a singular point of \mathfrak{G} . And a set $\{\exp tX; t \text{ real}\}$ is called a path through the unit element E of G.

In this paper we shall investigate the path-structure and its singularity of $\exp(\mathfrak{G})$, where $\exp(\mathfrak{G})$ means the image of the exponential mapping: $\exp(\mathfrak{G}) = \{\exp X; X \in \mathfrak{G}\}$. Let R and C be the fields of real numbers and complex numbers respectively. In §2, we have a general consideration concerning the singularity of Lie groups, and in §§3 and 4, from our standpoint we shall consider the path-structure and its singularity of the complex general linear group GL(n, C) and the real general linear group GL(n, R)respectively.

§2. The singularity of Lie groups

Let G be a Lie group, (5) its Lie algebra, and $X_i(i=1,2,\cdots,r)$ be a base of (5). Then any element x_0 of exp (5) is expressed by $x_0 = \exp \sum x_0^i X_i$, and any element x of (5) in a sufficiently small neighborhood of x_0 is expressed by $x = \exp \sum v^i X_i \exp \sum x_0^i X_i$, where $|v^i|(i=1,2,\cdots,r)$ are sufficiently small. The exponential mapping: $\sum x^i X_i \to \exp \sum x^i X_i$ is locally homeomorphic at $X_0 = \sum x_0^i X_i$, if and only if there exist two neighborhoods \mathbb{I} and \mathfrak{V} of O in (6) which are homeomorphic by the correspondence $\sum u^i X_i \in \mathbb{I} \leftrightarrow \sum v^i X_i \in \mathfrak{V}$ such that

(2.1)
$$\exp \sum (x_0^i + u^i) X_i = \exp \sum v^i X_i \exp \sum x_0^i X_i.$$

(2.1) is written as

(2.2)
$$\exp \sum (x_0^i + u^i) x_i \exp \left(-\sum x_0^i X_i\right) = \exp \sum v^i X_i$$

From (2.2) we have $([1], p. 156)^{10}$

(2.3)
$$v^i = \sum J(x_0)^i_j u^j = \sum ((\exp C(x_0) - E)/C(x_0))^i_j u^j,$$

¹⁾ Numbers in brackets refer to the references at the end of the paper.