Jordan and Jordan Triple Isomorphisms of Rings

By

Kiyosi Yamaguti

(Received Sept. 25, 1956)

A Jordan homomorphism or semi-homomorphism of an associative ring \mathfrak{A} into an associative ring \mathfrak{B} is defined as a mapping $a \rightarrow a^{\prime}$ such that
(I) $(a+b)^{\prime}=a^{\prime}+b^{\prime}$,
(II) $(a b)^{\prime}+(b a)^{\prime}=a^{\prime} b^{\prime}+b^{\prime} a^{\prime}$.

In the ring \mathfrak{B}, if $2 x^{\prime}=0$ implies $x^{\prime}=0$, it is called \mathfrak{B} has not additive order 2. It is well known that, on the assumption that the additive order of \mathfrak{B} is not 2 , the additive mapping (II) is equivalent to the following:
$(\mathrm{II})^{\prime} \quad\left(a^{2}\right)^{\prime}=\left(a^{\prime}\right)^{2}$
and implies (III):
(III) $\quad(a b a)^{\prime}=a^{\prime} b^{\prime} a^{\prime}$.

In this paper we will consider the meanning of the mapping (III) (Theorem 1) and for the prime ring prove the generalization of G. Ancochea's theorem [1] ${ }^{11}$ (Theorem 2). Also, we will show a result similar to JacobsonRickart's theorem [3] for the one-to-one mapping (I), (III) (Theorem 3). Our principal result (Theorem 2) is based on the identities in Lemma 1 and 2. Recently, I. N. Herstein has proved some theorems for the Jordan homomorphisms [2]. His Theorem H is similar to our Theorem 2. The difference between his result and ours is that we do not require that the additive order of the image ring is not 3 .

1. We may get the Jordan ring \mathfrak{H}_{j} from the associative ring \mathfrak{H} by introducing Jordan product $\{a, b\}=a b+b a$ for any pair of elements a, b in \mathfrak{N}. Then we can regard the Jordan homomorphism of \mathfrak{H} into \mathfrak{B} as the homomorphism of \mathfrak{A}_{j} into \mathfrak{B}_{j}. Such relation holds for the mapping (I), (III).

Theorem 1. Let $a \rightarrow a^{\prime}$ be an additive mapping which satisfies (III) of a ring \mathfrak{H} into a ring \mathfrak{B} of additive order different from 2 , then it is a Jordan triple homomorphism, that is $\{\{a, b\} c\}^{\prime}=\left\{\left\{a^{\prime}, b^{\prime}\right\} c^{\prime}\right\}$ for any $a, b, c \in \mathfrak{M}$. And conversely.

Proof. For arbitrary elements $a, b, c \in \mathfrak{A}$

$$
(a b c+c b a)^{\prime}=((a+c) b(a+c)-a b a-c b c)^{\prime}=a^{\prime} b^{\prime} c^{\prime}+c^{\prime} b^{\prime} a^{\prime} .
$$

Hence, $\{\{a, b\} c\}^{\prime}=(a b c+c b a)^{\prime}+(b a c+c a b)^{\prime}=\left\{\left\{a^{\prime}, b^{\prime}\right\} c^{\prime}\right\}$. Conversely, $2\left\{a^{2}, b\right\}^{\prime}$ $=\{\{a, a\} b\}^{\prime}=2\left\{\left(a^{\prime}\right)^{2}, b^{\prime}\right\}$. Since the additive order of \mathfrak{B} is not 2 , we have $\left\{a^{2}, b\right\}^{\prime}=\left\{\left(a^{\prime}\right)^{2}, b^{\prime}\right\}$. Therefore, $2(a b a)^{\prime}=\{\{a, b\} a\}^{\prime}-\left\{a^{2}, b\right\}^{\prime}=2 a^{\prime} b^{\prime} a^{\prime}$. Thus, this theorem is proved.

1) Numbers in brackets refer to the references at the end of the paper.
