Some Remarks on Zariski Rings

By

Hazimu Satô

(Received Aug. 30, 1956)

Introduction. Given a Noetherian ring A with identity and an ideal \mathbb{M} of A such that $\bigcap_{n=1}^{\infty} \mathbb{M}^n = (0)$, we may topologize A by adopting $\{\mathbb{M}^n; n=1, 2, \cdots\}$ as a fundamental system of neighbourhoods of zero. This topologized ring is usually referred to as an \mathbb{M} -adic ring, and is called a Zariski ring if its ideals are all closed. An \mathbb{M} -adic ring is a Zariski ring if and only if \mathbb{M} is contained in its Jacobson radical, that is to say, the intersection of all its maximal ideals. In this note, unless otherwise stated, A will denote an \mathbb{M} -adic Zariski ring and \mathbb{A} , \mathbb{A} , \mathbb{A} ideals of A; A will denote the completion of A and A, A ideals of A.

Now the following properties (α) , (β) and (γ) are usually derived from the property $(\alpha:cA)$ $\widehat{A}=\alpha\widehat{A}:c\widehat{A}$ $(c\in A)$ ([11], p. 353, Lemma 1; [9], p. 9, Proposition 1).

- (α) ($\alpha \cap b$) $\hat{A} = \alpha \hat{A} \cap b \hat{A}$ ([4], p. 54, Theorem 1).
- (β) $(\mathfrak{a}:\mathfrak{b})\hat{A}=\mathfrak{a}\hat{A}:\mathfrak{b}\hat{A}$.
- (γ) Let \mathfrak{q} be \mathfrak{p} -primary and $\hat{\mathfrak{p}}$ be any prime divisor of $\mathfrak{q}\widehat{A}$, then $\hat{\mathfrak{p}} \cap A = \mathfrak{p}$ ([1], p. 699, Proposition 6; [9], p. 9, Corollary 2).
- (β) is proved as follows: $\alpha: \beta = \alpha: (b_1, \dots, b_n) = (\alpha: b_1 A) \cap \dots \cap (\alpha: b_n A)$, so $(\alpha: \beta) \hat{A} = (\alpha \hat{A}: b_1 \hat{A}) \cap \dots \cap (\alpha \hat{A}: b_n \hat{A}) = \alpha \hat{A}: \beta \hat{A}$.

Hence, from (α) and (β) , we see that the mapping $\alpha \to \alpha \hat{A}$ is an isomorphism with respect to all the ideal-operations $(+, \cdot, :, \cap)$.

In § 1 we shall consider some relations between the prime divisors of a and those of $a\hat{A}$. For proof, in addition to the above-mentioned properties, the following fact will be used: In a Noetherian ring with identity, a prime ideal p is a prime divisor of a if and only if p=a: p for some $p \notin a$.

In § 2, as an application of the results obtained in § 1, the so-called transition theorem on lengths of primary ideals will be given for Zariski rings.

In § 3, by making use of Krull's Primidealkettensatz, some relations between maximal chains of prime ideals in A and those in \hat{A} will be con-