JOURNAL OF SCIENCE OF THE HIROSHIMA UNIVERSITY, SER. A, VOL. 20, NO. 1, MAY, 1956

Lengths of Projections in Rings of Operators

By

Shûichirô MAEDA

(Received Feb. 7, 1956)

Introduction

In the theory of rings of operators, Dye $[1, \S4]$ introduced in a σ finite, essentially finite ring the concept of the length of the identity by the cyclic dissection, and proved that such a ring is expressible as a direct sum of rings such that every summand is of the uniform length, that is, all central projections in each summand have the same length ([1], Theorem 3).

In an arbitrary ring, Ogasawara [5, p. 257] defined the lengths of σ finite projections, in connection with the lengths of normal states. In this paper, for any (not necessarily σ -finite) projection P whose central envelope is σ -finite relative to the center, we define the length by the same way as in [5], that is, the length of P is the least cardinal of the cyclic projections by whose sum P may be represented. Our definition coincides with that of [1] in the σ -finite, essentially finite case. Generalizing the result of Theorem 3 of [1], we get the decomposition theorem for length (Theorem 2), which also includes Theorem 1 of [3] as a special case.

Next we define the *l*-function of a ring M which is closely related to the lengths of the central σ -finite projections, and prove that the quotient of the *l*-function of M' divided by that of M is a unitary invariant of M, which, in the semi-finite case, coincides with the unitary invariant which was introduced by Pallu de La Barrière [6], and, in the case of type III, coincides with the inverse of the coupling operator which was introduced by Griffin [3].

§1. Lengths of projections

A projection P in a ring M of operators on a Hilbert space \mathfrak{H} is said to be *cyclic* relative to M if there exists a vector $x \in \mathfrak{H}$ such that [M'x] $=P\mathfrak{H}$ (see Dye [1], Notation 2.1). P is said to be σ -finite (=countably decomposable) relative to M if any orthogonal family of non-zero projections in M and less than P is at most countable. P is σ -finite if and only if Pis a sum of countable cyclic projections. If M is commutative, then any