HIROSHIMA MATH. J. 20 (1990), 209–211

Non-existence of positive commutators

Tohru Ozawa

(Received May 19, 1989)

We consider the positivity of the commutator [H, iA] for self-adjoint operators H and A in a complex Hilbert space $\mathscr{H} \neq \{0\}$. Throughout the paper we denote by (\cdot, \cdot) the scalar product on \mathscr{H} and by $\|\cdot\|$ the associated norm.

In the case where H and A are bounded, it is well known from the proof of Putnam's theorem that $[H, iA] \ge \alpha 1$, i.e.,

$$([H, iA]\psi, \psi) \ge \alpha \|\psi\|^2$$
 for any $\psi \in \mathcal{H}$,

is impossible for any $\alpha > 0$ (see [1; p. 61]). Our purpose in this paper is to extend the above result to the case where H and A are unbounded. In this case, following Mourre [2], we define the commutator [H, iA] by

$$([H, iA]\psi, \phi) = i(A\psi, H\phi) - i(H\psi, A\phi), \qquad \psi, \phi \in D(A) \cap D(H),$$

where D(A) (resp. D(H)) denotes the domain of A (resp. H). We prove

THEOREM. Let A and H be self-adjoint operators in \mathcal{H} such that $D(H) \subset D(A)$. Then $[H, iA] \ge \alpha 1$ is impossible for any $\alpha > 0$.

Before proving the theorem, we give a few remarks.

REMARK 1. It follows from the closed graph theorem that the assumption of the previous result is precisely $D(H) = D(A) = \mathcal{H}$.

REMARK 2. If D(H) and D(A) have no inclusion relations, the conclusion in the theorem fails. For example, if $\mathscr{H} = L^2(\mathbb{R})$, $A = x \cdot$ with domain $D(A) = \{\psi \in \mathscr{H}; x\psi \in \mathscr{H}\}$, H = -id/dx with domain $D(H) = \{\psi \in \mathscr{H}; (d/dx)\psi \in \mathscr{H}\}$, then [H, iA] = 1 on $D(A) \cap D(H)$.

PROOF OF THEOREM. In what follows $\mathscr{L}(\mathscr{H})$ denotes the Banach space of all bounded operators on \mathscr{H} . Suppose that $[H, iA] \ge \alpha 1$ holds for some $\alpha > 0$. We choose $\phi_0 \in \mathscr{H} \setminus \{0\}$ and set $\phi = (H + i)^{-1}\phi_0$. Then $\phi \in D(H) \setminus \{0\}$ and the map $R \ni t \mapsto e^{-itH}\phi \in \mathscr{H}$ is continuously differentiable. By the closed theorem, there is a constant C > 0 such that

(1)
$$||A\psi|| \le C(||H\psi|| + ||\psi||), \quad \psi \in D(H).$$