Oscillation criteria for nonlinear differential systems with general deviating arguments of mixed type

Pavol Marušiak

(Received January 30, 1989)

1. Introduction

In this paper we consider the nonlinear differential system with deviating arguments of the form

$$\begin{aligned} (S_{\lambda}) & y_{i}'(t) = p_{i}(t)y_{i+1}(h_{i+1}(t)), & i = 1, 2, \dots, n-1, \\ y_{n}' = (-1)^{\lambda} \sum_{m=1}^{N} a_{m}(t)f_{m}(y_{1}(g_{m}(t))), & t \ge 0, \quad n \ge 2, \quad \lambda \in \{1, 2\}, \end{aligned}$$

under the following standing assumptions:

- (A₁) $p_i: [0, \infty) \to [0, \infty), (i = 1, 2, ..., n 1)$ are continuous functions and $\int_{-\infty}^{\infty} p_i(t) dt = \infty, i = 1, 2, ..., n - 1;$
- (A₂) $a_m: [0, \infty) \to [0, \infty)$, (m = 1, 2, ..., N) are continuous functions and are not identically zero on any infinite subinterval of $[0, \infty)$;
- (A₃) $h_i: [0, \infty) \to R$, (i = 2, 3, ..., n) are continuously differentiable functions with $h'_i(t) > 0$ on $[0, \infty)$, and $\lim_{t\to\infty} h_i(t) = \infty$ for i = 2, 3, ..., n;
- (A₄) $g_m: [0, \infty) \to R$ (m = 1, 2, ..., N) are continuous functions and $\lim_{t \to \infty} g_m(t) = \infty$ for m = 1, 2, ..., N;
- (A₅) $f_m: R \to R \ (m = 1, 2, ..., N)$ are continuous functions and $uf_m(u) > 0$ for $u \neq 0, m = 1, 2, ..., N$.

By a proper solution of the system (S_{λ}) we mean a solution $y = (y_1, y_2, ..., y_n) \in C^1[[T_y, \infty), R]$ which satisfies (S_{λ}) for all sufficiently large t, and $\sup\left\{\sum_{i=1}^n |y_i(t)|; t \ge T\right\} > 0$ for any $T \ge T_y$. We make the standing hypothesis that the system (C_{λ}) does not support on the standing hypothesis.

that the system (S_{λ}) does possess proper solutions.

A proper solution of (S_{λ}) is called oscillatory if each of its component has arbitrarily large zeros. A proper solution of (S_{λ}) is called nonoscillatory (weakly nonoscillatory) on $[T_y, \infty)$ if each of its component (at least one component) is eventually of constant sign on $[T, \infty) \subset [T_y, \infty)$.

In this paper we shall study oscillatory properties of solutions of differential systems (S_{λ}) with deviating arguments of mixed type, which are in general essentially different from those of ordinary $(h_i(t) \equiv t, i = 2, 3, ..., n, g_m(t) \equiv t,$