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1. Introduction

In this paper we consider the nonlinear differential system with deviating
arguments of the form

(Sx) yl(t) = Pi(t)yi+1(hi+1(t)), i = 1, 2, . . . . , n - 1 ,

y'n = ( - 1)A t <>m(t)fm(yi{0m(t))), t > 0 , n > 2 , X e {1, 2} ,
m = l

under the following standing assumptions:
i'- [0, oo) -• [0, oo), (i = 1, 2, , n — 1) are continuous functions and

Pi(t)dt = oo, i = 1, 2, , n — 1;
Jo

(A2) #m: [0, oo) -• [0, oo), (m = 1, 2 , . . . , N) are continuous functions and
are not identically zero on any infinite subinterval of [0, oo);

(A3) ht: [0, oo) -»R, (i = 2, 3 , . . . , n) are continuously differentiable func-
tions with h[{t) > 0 on [0, oo), and lim^^ ht(t) = oo for i = 2, 3, . . . . ,
n;

(A4) gm: [0, oo) -> R (m = 1, 2 , . . . , N) are continuous functions and
lim,^, gjt) = oo for m = 1, 2, . . . . , N;

(A5) fm: R -+ R (m = 1, 2 , . . . , N) are continuous functions and w/m(w) > 0
for w^O, m = 1, 2, . . . . , JV.

By a proper solution of the system (5A) we mean a solution y = (yl9 y2,...,

? °°)> ^ ] which satisfies (SA) for all sufficiently large t, and

f
Jo

SUP ^Z?=i l^iWI; f > T> > 0 for any T > Ty. We make the standing hypothesis

that the system (Sx) does possess proper solutions.
A proper solution of (5A) is called oscillatory if each of its component

has arbitrarily large zeros. A proper solution of (SA) is called nonoscillatory
(weakly nonoscillatory) on [7^, oo) if each of its component (at least one
component) is eventually of constant sign on [T, oo) c [Ty, oo).

In this paper we shall study oscillatory properties of solutions of differen-
tial systems (Sx) with deviating arguments of mixed type, which are in general
essentially different from those of ordinary (h^t) = t, i = 2, 3 , . . . , n, gm(t) = t,


