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The aim of this paper is to give a new approach for considering the
question concerning the oscillatory criteria for differential equations with devia-
ting argument.

We will deal with the differential equation

(E) Lny(t) + h(t, y{<p{t)\ yf{cp{i)\ ..., f-l\q>(t))) = 0, n > 1

where h:JxRn->R, cp:J-+R, a{: J -»(0, oo), i = 0, 1, , n, are continuous
functions, J = [£0, oo), and

Loy(t) = ao(t)y(t), Lty(t) = a^L^y^y , i = 1, 2, ...., n .

Under a solution y(t) of (E) we will understand a solution existing on some ray
[Ty, oo) and such that

sup {|.KOI: *! ̂  f < oo} > 0 for any t± ^ Ty .

The following basic assumptions will be used:

2. > ;oM^> ;o J)
; i»- J)

;
w- i )>0 for all teJ and any ^ G J R , i = 0, 1, . . . . ,

n- I, yo=£0;

3- y o M ^ y o ^ i ' - ' - ' y / . - i ) ^ f o r all t e J a n d a n y y f e R , i = 0, 1, . . . . ,
n - 1, y 0 * 0;

4. l im (p(0 = oo as t -• oo.

DEFINITION 1. A solution y(t) of (E) will be called oscillatory if there exists
an increasing sequence {ti}^=1 such that l i m ^ tt = oo and y(tt) = 0, i = 1,
2, A solution j;(0 of (E) will be called nonoscillatory if it is not oscil-
latory, i.e. there exists Ty' ̂  Ty such that y(t) > 0 or y(t) < 0 on the interval
[T;, oo).

It follows from the assumptions 1.-4. and from the equation (E) that to


