The law of small numbers and the limit theorem for symmetric statistics with mixing conditions

MUSTAFID

(Received May 16, 1989)

§1. Introduction

There has been considerable and theoretical interest in how well the Poisson distribution approximates the distribution of the sums of arbitrary indicator (zero-one) variables. Results of this type, either limit theorems or quantitative estimates of the distance to a Poisson distribution, have been shown under various conditions by many authors. Janson [14] gave a sufficient condition (not of mixing type) for convergence to Poisson distribution of a sequence of sums of dependent indicator (zero-one) random variables. Chen [5] gave a general method of obtaining and bounding the error in approximating the distribution of the sums of dependent Bernoulli random variables by the Poisson distribution. Dobrushin and Sukhov [9], gave necessary and sufficient conditions for convergence to a Poisson process of infinite particle systems under the action of free dynamic (see also Willms [22] and Zessin [23]). The other investigations in this direction were conducted within the rapidly developing field of symmetric statistics. Silverman and Brown [20] have obtained Poisson limit theorems for certain sequences of symmetric statistics

(1.1)
$$\sum h_k(X_{i_1}, \ldots, X_{i_k}),$$

based on a sample of identically distributed independent random variables X_1, \ldots, X_n , where h_k is a symmetric zero-one function and the summation is extended over all sets $\{i_1, \ldots, i_k\}$ of distinct integers drawn from $\{1, \ldots, n\}$. Barbour and Eagleson [2], [3] gave a general Poisson approximation theorem for symmetric statistics (1.1) from a sample of independent but not necessarily identically distributed random variables and with a symmetric zero-one function of k variables.

The Poisson limit theorems in the more general setting of symmetric statistics have been obtained by Mustafid and Kubo [18]. They have obtained the asymptotic distribution of the sums of symmetric statistics

(1.2)
$$\sum_{1 \leq s_1 < \cdots < s_k \leq n} h_k(X_{n,s_1}, \ldots, X_{n,s_k}),$$