Boundary limits of locally *n*-precise functions

Yoshihiro MIZUTA

(Received March 24, 1989)

1. Introduction

In this note we investigate the existence of boundary limits of locally *n*-precise functions u on a domain G in \mathbb{R}^n which satisfy a condition of the form:

(1)
$$\int_{G} \Psi(|\operatorname{grad} u(x)|)\omega(x)dx < \infty$$

with a nonnegative measurable function ω on G and a positive nondecreasing function Ψ on the interval $(0, \infty)$; for the definition and basic properties of locally *p*-precise functions, see Ohtsuka [4] and Ziemer [5]. The function $\Psi(r)$ is assumed to be of the form $r^n \psi(r)$, where $\psi(r)$ is a positive nondecreasing function on the interval $(0, \infty)$ satisfying the following conditions:

 $\begin{array}{ll} (\psi_1) & \text{There exists } A > 0 \text{ such that} \\ & A^{-1}\psi(r) \leq \psi(r^2) \leq A\psi(r) & \text{ for any } r > 0 \\ (\psi_2) & \int_0^1 \psi(r^{-1})^{-1/(n-1)} r^{-1} dr < \infty. \end{array}$

For example,

 $\psi(r) = [\log (2+r)]^{\alpha}, [\log (2+r)]^{n-1} [\log (2+(\log (2+r)))]^{\alpha}, \dots,$

satisfy the above conditions, as long as $\alpha > n - 1$.

We shall first show that if $\int_G \Psi(|\operatorname{grad} u(x)|)dx < \infty$, then there exists a continuous function u^* on G such that $u^* = u$ a.e. on G, and furthermore, in case G is a Lipschitz domain, u^* can be extended to a continuous function on $G \cup \partial G$.

Next, in section 3, we are concerned with the existence of limits at a given boundary point ξ , in the case where *u* satisfies (1) with $\omega(x) = \lambda(|x - \xi|)$ for a positive nondecreasing function λ on the interval $(0, \infty)$. Then, in the next section, we study the existence of boundary limits along certain subsets of *G* for a function *u* satisfying (1) with $\omega(x) = \lambda(\rho(x))$, where λ is as above and $\rho(x)$ denotes the distance of *x* from the boundary ∂G .

In the last section, we discuss the existence of limits at infinity, in case G is unbounded and $\omega \equiv 1$.