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1. Introduction

In this paper we consider the derivations of a generalized Witt algebra
W(G, I) over a field I of characteristic zero, where / is a non-empty index set, G
is an additive submonoid of J^g / I* , a n d t* (iel) are copies of the additive
group I+. W(G, I) is a Lie algebra which has a basis {w(a, i)\ae G, i e /} and
the multiplication

, i), w(b, 7)] = a^{a + b, i) - btw{a + b, j),

where i, j el and a = {at)ieI, b = (bi)ieI e G.
Generalized Witt algebras have been considered by many authors over

fields of positive characteristic (e.g., [4], [6], [8]) and over fields of character-
istic zero (e.g., [1], [5]). We shall show that any derivation of W(G, I) is a sum
of a locally inner derivation and a derivation of degree zero (Theorem 1).
In the case of G = 0 l - e / Z f the Lie algebra W(G, I) has only locally inner
derivations, in particular if | / | < oo then the derivations of W(G, I) are inner
(Theorem 2). Concerning the above results it is known that if G is a group
and L is a finitely generated G-graded Lie algebra which admits a weight space
decomposition ®fl6G A* with finite dimensional La, then a derivation of L is a
sum of inner derivation and a derivation of degree zero [2, p. 36].

For every aeG let Wa be the subspace of W spanned by {w(a,i)\ie I}.
We say that a derivation d of W(G, I) has degree b if WaS a Wa+b for any aeG,
and hence every Wa is invariant under a derivation of degree zero. Let L be a
Lie algebra over !. A derivation 3 of L is a locally inner derivation if for any
finite subset F of L there exist a finite-dimensional subspace V of L containing
F and xeW such that 8\v = adx\v [3]. We denote by Der (L), Inn (L),
Lin (L) and Der (L)o respectively the derivations of L, the inner derivations of
L, the locally inner derivations of L and the derivations of L of degree zero.


