On the derivations of generalized Witt algebras over a field of characteristic zero

Dedicated to the memory of Professor Shigeaki Tôgô

Toshiharu IKEDA and Naoki KAWAMOTO (Received January 13, 1989)

1. Introduction

In this paper we consider the derivations of a generalized Witt algebra W(G, I) over a field \mathfrak{k} of characteristic zero, where I is a non-empty index set, G is an additive submonoid of $\prod_{i \in I} \mathfrak{k}_i^+$, and \mathfrak{k}_i^+ $(i \in I)$ are copies of the additive group \mathfrak{k}^+ . W(G, I) is a Lie algebra which has a basis $\{w(a, i) | a \in G, i \in I\}$ and the multiplication

$$[w(a, i), w(b, j)] = a_i w(a + b, i) - b_i w(a + b, j),$$

where $i, j \in I$ and $a = (a_i)_{i \in I}, b = (b_i)_{i \in I} \in G$.

Generalized Witt algebras have been considered by many authors over fields of positive characteristic (e.g., [4], [6], [8]) and over fields of characteristic zero (e.g., [1], [5]). We shall show that any derivation of W(G, I) is a sum of a locally inner derivation and a derivation of degree zero (Theorem 1). In the case of $G = \bigoplus_{i \in I} \mathbb{Z}_i$ the Lie algebra W(G, I) has only locally inner derivations, in particular if $|I| < \infty$ then the derivations of W(G, I) are inner (Theorem 2). Concerning the above results it is known that if G is a group and L is a finitely generated G-graded Lie algebra which admits a weight space decomposition $\bigoplus_{a \in G} L_a$ with finite dimensional L_a , then a derivation of L is a sum of inner derivation and a derivation of degree zero [2, p. 36].

For every $a \in G$ let W_a be the subspace of W spanned by $\{w(a, i) | i \in I\}$. We say that a derivation δ of W(G, I) has degree b if $W_a \delta \subset W_{a+b}$ for any $a \in G$, and hence every W_a is invariant under a derivation of degree zero. Let L be a Lie algebra over \mathfrak{k} . A derivation δ of L is a locally inner derivation if for any finite subset F of L there exist a finite-dimensional subspace V of L containing F and $x \in W$ such that $\delta|_V = \operatorname{ad} x|_V$ [3]. We denote by Der (L), Inn (L), Lin (L) and Der (L)₀ respectively the derivations of L, the inner derivations of L, the locally inner derivations of L and the derivations of L of degree zero.