Kirillov-Kostant theory and Feynman path integrals on coadjoint orbits of a certain real semisimple Lie group

Takashi Нashimoto
(Received May 6, 1992)

0. Introduction

Alekseev, Faddeev and Shatashvili showed in [1] that any irreducible unitary representation of compact groups can be obtained by path integrals. They computed characters of the representations. We showed in [3] that path integrals give unitary operators of the representation which is constructed by Kirillov-Kostant theory for the Heisenberg group, the affine transformation group on the real line, $S L(2, \mathbf{R})(\cong S U(1,1))$ and $S U(2)$. For the affine transformation group, we took a real polarization, for $S U(2)$ a complex polarization (but computed without Hamiltonians), and for the Heisenberg group and $S L(2, \mathbf{R})$ both a real polarization and a complex polarization. (For a complex polarization of $S L(2, \mathbf{R})$, we realized it as $S U(1,1)$ and computed without Hamiltonians.)

In [4] we found that, in order to compute the path integrals with nontrivial Hamiltonians for $S U(1,1)$ and $S U(2)$ to obtain unitary operators realized by Borel-Weil theory, we have to regularize the Hamiltonian functions, and in [5] we extended the results to the case that the maximal compact subgroup K of a connected semisimple Lie group G has equal rank to the complex rank of G.

In this paper we work with a linear connected noncompact semisimple Lie group G and consider real polarizations.

Let \mathfrak{g} be the Lie algebra of G. We fix a Cartan involution θ of \mathfrak{g} and let the corresponding Cartan decomposition [6] be

$$
\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{p}
$$

Let \mathfrak{a} be a maximal abelian subalgebra of \mathfrak{p} and \mathfrak{m} the centralizer of \mathfrak{a} in \mathfrak{f}. If we fix a notion of positivity for \mathfrak{a}-roots, we can let n be the nilpotent subalgebra given as the sum of the root spaces for the positive roots.

In this paper, we explicitly compute the path integrals with Hamiltonians for $Y \in \mathfrak{m} \oplus \mathfrak{a}$ or \mathfrak{n}, to give unitary operators of the representation which is constructed by Kirillov-Kostant theory. When we compute the path integral with the Hamiltonian for $Y \in \mathfrak{n}$, we make the following assumption.

