HIROSHIMA MATH. J. 23 (1993), 537–550

On modified singular integrals

Dedicated to Prof. Masanori Kishi on the occasion of his 60th birthday

Takahide KUROKAWA (Received February 26, 1992)

1. Introduction

Let R^n be the *n*-dimensional Euclidean space. E. M. Stein [5] gave a weighted norm inequality for singular integrals on R^n as follows (see also C. Sadosky [4; Theorem 6.1]):

THEOREM A. Let $\Omega(x)$ be a homogeneous function of degree -n on \mathbb{R}^n , and suppose that $\Omega(x)$ satisfies the cancellation property

(1.1)
$$\int_{S} \Omega(x) d\sigma(x) = 0,$$

where $d\sigma$ is the induced Euclidean measure on the unit sphere S, and $\Omega(x)$ is bounded on S. Let Tf(x) denote the corresponding singular integral:

$$Tf(x) = \lim_{\varepsilon \to 0} \int_{|x-y| \ge \varepsilon} \Omega(x-y) f(y) \, dy.$$

Then

(1.2)
$$\left(\int |Tf(x)|^p |x|^{-rp} dx\right)^{1/p} \le C \left(\int |f(y)|^p |y|^{-rp} dy\right)^{1/p},$$

provided that 1 and <math>-n/p' < r < n/p where (1/p) + (1/p') = 1.

For the ordinary singular integrals the above restriction of r is necessary. Indeed, when $r \ge n/p$, for $f(y) = (1 + \log |y|)^{-1}$, $|y| \ge 1$, we see $\int |f(y)|^p |y|^{-rp} dy < \infty$ and $\int_{|x-y|\ge \epsilon} |\Omega(x-y)f(y)| dy = \infty$, so (1.2) fails. When $r \le -n/p'$, for $f(y) = (1 - \log |y|)^{-1} |y|^{-\beta}$, $|y| \le 1$, (1.2) does not hold with $n \le \beta \le (n/p) - r$. The purposes of this paper are to introduce modified singular integrals and give integral estimates similar to (1.2) which holds for all r > -n/p' such that $r - (n/p) \ne a$ nonnegative integer.

Let $\Omega(x)$ be a homogeneous function of degree -n, and suppose that $\Omega(x)$ satisfies (1.1) and $\Omega(x) \in C^{\infty}(\mathbb{R}^n - \{0\})$. For an integer $k \ge -1$ we set