Structure of the probability contents inner boundary of some family of three-parameter distributions

Tadashi NAKAMURA and Takahisa YOKOYAMA (Received January 12, 1992)

1. Introduction

Let F(x) be a strictly increasing and continuously differentiable distribution function (d.f.) on the real line R, and let $h(x)(\text{resp. } \tilde{h}(x))$ be a continuous and strictly increasing function on $R_+ = (0, \infty)(\text{resp. } R)$ with $h(R_+) =$ $R(\text{resp. } \tilde{h}(R) = R)$. Define a transformation $t(x, \theta)(\theta = (\alpha, \beta, \lambda) \in R_+ \times R \times [-\infty, \infty))$ by

$$t(x, \theta) = \begin{cases} \alpha \tilde{h}(x) - \beta, & \lambda = -\infty, \\ \alpha h(x - \lambda) - \beta, & \lambda \neq -\infty. \end{cases}$$

Let Θ be a nonempty subset of $\mathbf{R}_+ \times \mathbf{R} \times [-\infty, \infty)$ and put $\mathscr{F}(\Theta) = \{F(t(x, \theta)); \theta \in \Theta\}$, being called a family of three-parameter d.f.'s which are positive only to the right of a shifted origin. The family $\mathscr{F}(\mathbf{R}_+ \times \mathbf{R} \times \mathbf{R})$ with $h(x) = \log x$ was considered in Finney [4].

Suppose that:

- (i) We have N different kinds of experiments on some characteristic X.
- (ii) The transformed variable $t(X, \theta)$ has a d.f. F.
- (iii) In the *i*th experiment, n_i objects are tested and information available for each characteristic $X_{ij} (1 \le j \le n_i)$ is only that its value lies in a proper subinterval \mathscr{C}_{ij} of **R** with nonempty interior.

The collection $\mathscr{C} \equiv \{\mathscr{C}_{ij}; 1 \le i \le N, 1 \le j \le n_i\}$ is called a *pooled interval*censored (p.i.c.) data. When N = 1, the p.i.c. data \mathscr{C} is simply called an *interval*-censored (i.c.) data. The i.c. data \mathscr{C} is called a grouped data if each \mathscr{C}_{1j} belongs to a set of mutually disjoint intervals whose union is equal to **R**. The p.i.c. data \mathscr{C} is called a *binary response data* if each \mathscr{C}_{ij} belongs to a set of mutually disjoint two intervals, depending only on *i*, whose union is equal to **R**.

There are various kinds of method for estimating the unknown true parameter θ_0 based on the p.i.c. data \mathscr{C} (cf. [2], [9], [13]). In these methods, an estimate $\hat{\theta}$ of the unknown true parameter θ_0 is defined by an optimal solution of a minimizing problem. Hence there arises a problem whether such