A Stroboscopic Method in the Cylindrical Phase Space

Masataka Yorinaga

(Received March 6, 1961)

1. Introduction

In this paper, we are concerned with a real system of n+1 nonlinear differential equations of the form as follows:

(1.1)
$$\begin{cases} \frac{dx_{i}}{dt} = \varepsilon X_{i}(x, \theta, t, \varepsilon) & (i = 1, 2, \dots, n), \\ \frac{d\theta}{dt} = \theta(x, \theta, \varepsilon) + \varepsilon \Psi(x, \theta, t, \varepsilon), \end{cases}$$

where

1° ε is a parameter such that $|\varepsilon| \leqslant 1$,

 2° $X_i(x, \theta, t, \varepsilon)$ $(i=1, 2, \dots, n)$, $\theta(x, \theta, \varepsilon)$ and $\Psi(x, \theta, t, \varepsilon)$ are twice continuously differentiable with respect to (x, θ, ε) in the domain

$$D: |x| = \sum_{i=1}^{n} |x_i| < M, -\infty < \theta, t < +\infty, |\varepsilon| < \delta,$$

 3° $X_i(x, \theta, t, \varepsilon)$ (i=1, 2,..., n) and $\Psi(x, \theta, t, \varepsilon)$ are continuous with respect to t in the domain D and are periodic in t with period $T_0 > 0$,

 4° $X_i(x, \theta, t, \varepsilon)$ $(i=1, 2, \dots, n)$, $\theta(x, \theta, \varepsilon)$ and $\Psi(x, \theta, t, \varepsilon)$ are periodic in θ with period 2π ,

$$5^{\circ}$$
 $\theta(x, \theta, 0) \neq 0$ for any $(x, \theta) \in D$.

The system of the form (1.1) cannot have any periodic solution of the proper sense, because $\theta(t)$ is monotonous due to the assumption 5°. But it may have a solution such that

(1.2)
$$\begin{cases} x_i(t+lT_0) = x_i(t) & (i=1, 2, \dots, n), \\ \theta(t+lT_0) = \theta(t) + 2m\pi, \end{cases}$$

where l and m are integers. Such a solution represents a closed curve in the cylindrical phase space, namely the space consisting of the points (x, θ) , θ being considered modulus 2π . So the solution satisfying the condition (1.2) can be called a periodic solution in the cylindrical phase space. In the sequel,