Maximum of the Amplitude of the Periodic Solution of van der Pol's Equation

Hiroki Yanagiwara (Received August 8, 1961)

1. Introduction

Previously, by Urabe and his collaborators [3, 5, 6]¹⁾, the periodic solutions of van der Pol's equation

(1.1)
$$\frac{d^2x}{dt^2} - \lambda (1 - x^2) \frac{dx}{dt} + x = 0 \quad (\lambda > 0)$$

have been computed for various values of λ up to 20. One of the important facts found by their computation is the behavior of the amplitude of the periodic solution as the damping coefficient varies from 0 to infinity. The amplitudes a obtained for various values of λ are as follows:

Table 1			
λ	a	λ	а
0	2. 000	6	2. 0199
1	2.009	8	2. 0169
2	2. 0199	10	2. 0145
3	2. 0235	20	2. 0077
4	2. 0231		
5	2. 0216	∞	2.0000

As was pointed out by Urabe [4], the above value for $\lambda=10$ differs by only 0.0007 from that given by the asymptotic expression of Дородницын [1]

(1.2)
$$a = 2 + \frac{\alpha}{3} \lambda^{-4/3} - \frac{16}{27} \frac{\log \lambda}{\lambda^2} + \frac{1}{9} (3b_0 - 1 + 2 \log 2)$$
$$-8 \log 3) \frac{1}{\lambda^2} + O(\lambda^{-8/3})$$
$$(\alpha = 2.338107, b_0 = 0.1723)$$

and the value for $\lambda = 20$ coincides exactly with that given by the above asymptotic expression. From this, it may be supposed that, for λ greater than 10, the amplitude behaves quite approximately in accordance with the asymptotic

¹⁾ The numbers in square brackets refer to the references listed at the end of the report.