The Potential Force Yielding a Periodic Motion with Arbitrary Continuous Half-Periods

Minoru URabe
(Received September 15, 1962)

1. Introduction

In the previous papers [3, 4], the author has given a method to determine the potential force $g(x)$ so that the period of the periodic solution of the equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+g(x)=0 \tag{1.1}
\end{equation*}
$$

may be an arbitrary given continuous function of the amplitude of the velocity or an arbitrary given continuously differentiable function of the amplitude.

Let R be the maximum velocity (i.e. the amplitude of the velocity) and let a and b be respectively the positive maximum and negative minimum displacement of x. Let $\tau_{1} / 2$ and $\tau_{2} / 2$ be respectively the times required to reach the state of the positive maximum displacement a and the state of the negative minimum displacement b from the equilibrium point $x=0$.

In his paper [1], Z. Opial called the quantities τ_{1} and τ_{2} respectively the positive half-period and the negative half-period, and discussed the various relations between these half-periods and the potential force $g(x)$.

The half periods $\tau_{i}(i=1,2)$ are the functions of R. Further the positive half-period τ_{1} and the negative half-period τ_{2} are also respectively the functions of the positive maximum displacement a and the negative minimum displacement b.

Opial has proved under very mild conditions that $g(x)$ is uniquely fixed if $\tau_{1}=\hat{\tau}_{1}(a)$ and $\tau_{2}=\hat{\tau}_{2}(b)$ are given. But he has not given a method to determine $g(x)$ for which any solution of (1.1) has the given arbitrary $\hat{\tau}_{1}(a)$ and $\hat{\tau}_{2}(b)$.

In the present paper, by means of the techniques used in his previous papers [2, 3, 4], the author will give a method to determine $g(x)$ so that either
$1^{\circ} \tau_{1}$ and τ_{2} may be respectively arbitrary given continuous functions $\tilde{\tau}_{1}(R)$ and $\tilde{\tau}_{2}(R)$, or
$2^{\circ} \tau_{1}$ and τ_{2} may be respectively arbitrary given continuously differentiable functions $\hat{\tau}_{1}(a)$ and $\hat{\tau}_{2}(b)$ whose derivatives fulfill the Lipschitz condition.

The problem of "tautochronism" [1] is to determine $g(x)$ so that $\tilde{\tau}_{1}(R)$ and

