Error Estimation in Numerical Solution of Equations by Iteration Process

Minoru Urabe

(Received August 30, 1962)

1. Introduction

Let R be a linear normed space and F be a complete subset of R. Let f be a functional defined on F such that $f(F) \in R$.

We assume that

(i)

(1.1)
$$||f(x') - f(x'')|| \leq K_0 ||x' - x''||$$

for any $x', x'' \in F$, where

(1.2)
$$0 < K_0 < 1;$$

(ii)

(1.3)
$$||f^*(x) - f(x)|| \leq \varepsilon$$

for any $x \in F$, where $f^*(x)$ is a numerical valuation of f(x) in actual computation with the error bound ε (>0) such that $f^*(F) \subset R$ (here, by a numerical valuation in actual computation, we mean a valuation by a set of finite numbers of the numbers rounded to a certain fixed number of decimal digits);

(iii) for a certain numerical value $x_0 \in F$,

(1.4)
$$\sum \left\{ h : \|h - x_1^*\| \leq \frac{K_0}{1 - K_0} \|x_1^* - x_0\| + 2\delta_0 \right\} \subset F,$$

where $x_1^* = f^*(x_0)$ and

(1.5)
$$\delta_0 = \frac{\varepsilon}{1-K_0}.$$

Then, by the author's previous paper $\lceil 1 \rceil$,

 $(i) \quad the \ equation$

$$(1.6) x = f(x)$$

has one and only one solution in F;

(ii) the unique solution \bar{x} of (1.6) is obtained by the ideal iteration process