Bifurcation of a Periodic Solution of van der Pol's Equation with the Harmonic Forcing Term

Masataka Yorinaga (Received September 17, 1962)

1. Introduction.

In this paper, we are concerned with van der Pol's equation with harmonic forcing term

(1.1)
$$\frac{d^2x}{dt^2} - \mathcal{E}(1-x^2)\frac{dx}{dt} + x = \mathcal{E}E\sin\omega t \quad (E\neq 0),$$

where ω is a number close to unity. Here, as is readily seen, we may assume $\varepsilon > 0$ and E > 0 without loss of generality. By the substitution of the time variable, the equation (1.1) can be written in the form as follows:

(1.2)
$$\frac{d^2x}{dt^2} + x = \varepsilon \left\{ -Ax + (1-x^2)\frac{dx}{dt} + E\sin t \right\},$$

which is rewritten in a simultaneous form as follows:

(1.3)
$$\begin{cases} \frac{dx}{dt} = y, \\ \frac{dy}{dt} = -x + \varepsilon \left\{ E \sin t - Ax + (1 - x^2)y \right\}. \end{cases}$$

In (1.2) or (1.3), notice that, besides \mathcal{E} , the quantities A and E are also supposed to be the parameters.

By the linear transformation

(1.4)
$$\begin{cases} x = \xi \cos t + \eta \sin t, \\ \gamma = -\xi \sin t + \eta \cos t, \end{cases}$$

the system (1.3) is transformed to the system of the form as follows:

(1.5)
$$\begin{cases} \frac{d\xi}{dt} = \mathcal{E}f(\xi, \eta, t), \\ \frac{d\eta}{dt} = \mathcal{E}g(\xi, \eta, t), \end{cases}$$

where