Reduction of Group Varieties and Transformation Spaces

Hiroshi Yanagihara

(Received March 2, 1963)

In the paper [3], Koizumi and Shimura solved affirmatively the following problem: let A and B be abelian varieties defined over a field k with a prime divisor \mathfrak{p} . Suppose that there exists a homomorphism of A onto B, defined over k. If A is without defect for \mathfrak{p} , then is there an abelian variety which is isomorphic to B over k and without defect for \mathfrak{p} ? In this paper we shall generalize this result for the cases of arbitrary group varieties and homogeneous spaces (Theorem 3), and apply it to a problem which concerns compatibility of the reduction process with the process making a coset space of a group variety by a subgroup (Theorem 4). Our generalization is not complete, because we need a ground ring extension in the process of constructing a group \mathfrak{p}' -variety (resp. a homogeneous \mathfrak{p}' -space) from a pre-group \mathfrak{p} -variety (resp. a pre-homogeneous \mathfrak{p} -space). However if k is complete with respect to the prime \mathfrak{p} , we do not need any ground ring extension. In other words it is possible to generalize completely the result obtained in [3] in this case.

First we shall define a pre-group p-variety, a pre-transformation p-space, etc., which corresponds to a pre-group, a pre-transformation space, etc. in [9], and prove some basic results (§1). Next Weil's idea in [11] is adapted to the case of p-simple p-varieties. The main result of §2 is stated in Theorem 1, whose applications will be seen in §3. Then we shall apply Weil's method of construction of a group variety (resp. a transformation space) from a pregroup (resp. a pre-transformation space) to the case of p-simple p-varieties. Theorem 2 in §3 corresponds to the main theorem in [9]. Theorem 3 is, then, a direct consequence of the basic results in §1 and Theorem 2. In §4 an application of Theorem 3 is given, to which we referred already in the above. §5 is devoted to the study of the reduction of generalized Jacobian varieties under a certain restriction.

Throughout the paper, we shall fix the basic field k and a discrete valuation ring v with the maximal ideal p and denote by κ the residue class field v/p. The terminologies and the notations in [8] and [13] will be freely used.

Here the author wishes to express his hearty thanks to Prof. Y. Nakai for his suggestions and his advice during the period of completing this work.

§1. Group p-varieties and homogeneous p-spaces.

Let (V, \overline{V}) and (W, \overline{W}) be two p-simple p-varieties¹, and let f be a rational

¹⁾ We shall denote \mathfrak{p} -varieties by (V, \overline{V}) etc.. For the precise notations, see §5 in [13]. A \mathfrak{p} -variety is called to be \mathfrak{p} -simple, if the corresponding model of a function field is \mathfrak{p} -simple.