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In the paper [3], Koizumi and Shimura solved affirmatively the follow-
ing problem: let A and B be abelian varieties defined over a field k with a prime
divisor p. Suppose that there exists a homomorphism of A onto B, defined over
k. If A is without defect for v, then is there an abelian variety which is iso-
morphic to B over k and without defect for p? In this paper we shall generalize
this result for the cases of arbitrary group varieties and homogeneous spaces
(Theorem 3), and apply it to a problem which concerns compatibility of the
reduction process with the process making a coset space of a group variety
by a subgroup (Theorem 4). Our generalization is not complete, because we
need a ground ring extension in the process of constructing a group p’-variety
(resp. a homogeneous p’-space) from a pre-group p-variety (resp. a pre-homo-
geneous p-space). However if & is complete with respect to the prime p, we
do not need any ground ring extension. In other words it is possible to gen-
eralize completely the result obtained in [3] in this case.

First we shall define a pre-group p-variety, a pre-transformation p-space,
etc., which corresponds to a pre-group, a pre-transformation space, ete. in
[9], and prove some basic results (§1). Next Weil’s idea in [11] is adapted
to the case of p-simple p-varieties. The main result of §2 is stated in Theorem
1, whose applications will be seen in §3. Then we shall apply Weil’s method
of construction of a group variety (resp. a transformation space) from a pre-
group (resp. a pre-transformation space) to the case of p-simple p-varieties.
Theorem 2 in §3 corresponds to the main theorem in [97]. Theorem 3 is, then,
a direct consequence of the basic results in §1 and Theorem 2. In §4 an ap-
plication of Theorem 3 is given, to which we referred already in the above.
§5 is devoted to the study of the reduction of generalized Jacobian varieties
under a certain restriction.

Throughout the paper, we shall fix the basic field £ and a discrete valua-
tion ring o with the maximal ideal p and denote by « the residue class field
v/p. The terminologies and the notations in [8] and [13] will be freely used.
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§1. Group p-varieties and homogeneous p-spaces.

Let (V, V) and (W, W) be two p-simple p-varieties”, and let f be a rational

1) We shall denote p-varieties by (¥, 7) etc.. For the precise notations, see §5 in [13]. A p-variety
is called to be p-simple, if the corresponding model of a function field is p-simple.



