On θ -convolutions of vector valued distributions

Risai Shiraishi

(Received September 20, 1963)

Introduction

In our previous paper [4] collaborated with Y. Hirata, we have introduced the notion of c-convolution of vector valued distributions, which is a natural extension of the notion of the usual convolution of scalar valued distributions. On the other hand, in the Schwartz theory of convolution [11] [12], the problem concerning convolution has been worked out from a different standpoint. For instance, let \mathcal{H}, \mathcal{K} and \mathcal{L} be three normal spaces of distributions on \mathbb{R}^N , N-dimensional Euclidean space. Let $\bigcup : \mathcal{H} \times \mathcal{K} \to \mathcal{L}$ be a bilinear map which is hypocontinuous with respect to the bounded subsets of \mathcal{H} and \mathcal{K} . Let E, F, G be three Banach spaces and $\theta: E \times F \to G$ be a continuous bilinear map. He asked the question whether it would be possible to define a unique bilinear map $\bigcup_{\theta}: \mathcal{H}(E) \times \mathcal{K}(F) \to \mathcal{L}(G)$ in such a way that the map satisfies the following conditions:

(a) \cup_{θ} is hypocontinuous with respect to the bounded subsets of $\mathscr{H}(E)$ and $\mathscr{K}(F)$.

(b) For decomposed elements, that is, for elements of the type $S \otimes e$ and $T \otimes f$ of $\mathcal{H}(E)$ and $\mathcal{K}(F)$ we have

$$(S \otimes e) \cup_{\theta} (T \otimes f) = (S \cup T) \otimes \theta(e, f).$$

Under certain plausible conditions imposed on \mathscr{H} , \mathscr{K} and \mathscr{L} , the problem has been settled definitely. Consider the convolution map $*: \mathscr{H} \times \mathscr{K} \to \mathscr{L}$ which is, by definition [12], a separately continuous map coinciding on $\mathscr{D} \times \mathscr{D}$ with the usual convolution. Suppose that * is hypocontinuous with respect to the bounded subsets of \mathscr{H} and \mathscr{K} . Now if we take the map * for the map \cup above, then the problem just described turns out to be the one concerning the convolution. Although his theory sheds a new light on the basic operations of vector valued distributions, there remains something to be desired as to the convolution maps:

(1) Since the map * need not agree with the usual convolution (the example is given in [14]), S*T may have only relative meanings and a fortiori the same for $\vec{S}*_{\theta}\vec{T}$.

(2) Even if the * agrees with the usual convolution, $\vec{S} *_{\theta} \vec{T}$, considered as convolution of two vector valued distributions, has no intrinsic meanings, but may depend on $\mathcal{H}(E)$ and $\mathcal{K}(F)$ in which \vec{S} and \vec{T} are contained respectively.