On Spectral Representations of Generalized Spectral Operators

Fumi-Yuki Maeda

(Received September. 19, 1963)

Introduction. In the previous paper [3], the author introduced a theory of generalized spectral operators based on spectral representations instead of spectral measures. As Foias [2] first indicated, the spectral representation corresponding to a generalized spectral or scalar operator is not uniquely determined. In fact, if we take a spectral representation U and a nilpotent operator $Q: Q^{k+1} = 0$, commuting with U and if we define V by

$$V(f) = U(f) + U(Df)Q + \frac{U(D^2f)Q^2}{2} + \dots + \frac{U(D^kf)Q^k}{k!}$$

 $(D = \frac{1}{2} \left(\frac{\partial}{\partial \xi} + i \frac{\partial}{\partial \eta} \right), f = f(\xi, \eta) \in C_c^{\circ}), \text{ then } U \text{ and } V \text{ are different } C_c^{\circ} \text{-spectral representations corresponding to the same scalar operator.}$

In the present paper, we shall show that, for two commuting spectral representations U and V corresponding to the same scalar operator, U(f) - V(f) is quasi-nilpotent and in many cases, there is a relation expressed in the above form. (See §3 and §6.)

On the due course of our argument, we shall see (§4) that the operators $S_U = U(\lambda)$ and $S_U^* = U(\bar{\lambda})$ ($\lambda = \xi + i\eta$ and $\bar{\lambda} = \xi - i\eta$) together determine the representation U. Thus, in connection with our result mentioned above, we see that $S_U^* - S_V^*$ is nilpotent in a certain sense when $S_U = S_V$ and S_U^* commutes with S_V^* (§5).

We are able to consider the uniquely determined canonical representation for a scalar opertor S satisfying $S=S_U=S_U^*$ (§7). Such operators can be regarded as a generalization of Hermitian operators and will be called *real* scalar operators.

§ 1. Preliminaries.

1) The space $C_c^m(0 \le m \le \infty)$. In the present paper, the basic function algebra (cf. [3]) is restricted to $C_c^m(0 \le m \le \infty)$, the space of all complex valued *m*-times continuously differentiable (infinitely differentiable, if $m = \infty$) functions with compact supports on the two dimensional real space R^2 . When we speak of a point of R^2 as a variable of functions, we often identify it with a point in the complex number field *C*, which is topologically equivalent to R^2 . Thus, $f(\lambda)$ and $f(\xi, \eta)$ express the same function, where $\lambda = \xi + i\eta \in C$ and $(\xi, \eta) \in R^2$. Throughout this paper, δ always denotes a compact set and σ an