On Spectral Representations of Generalized Spectral Operators

Fumi-Yuki Maeda
(Received September. 19, 1963)

Introduction. In the previous paper [3], the author introduced a theory of generalized spectral operators based on spectral representations instead of spectral measures. As Foias [2] first indicated, the spectral representation corresponding to a generalized spectral or scalar operator is not uniquely determined. In fact, if we take a spectral representation U and a nilpotent operator $Q: Q^{k+1}=0$, commuting with U and if we define V by

$$
V(f)=U(f)+U\left(D_{f}\right) Q+\frac{U\left(D^{2} f\right) Q^{2}}{2}+\cdots+\frac{U\left(D^{k} f\right) Q^{k}}{k!}
$$

$\left(D=\frac{1}{2}\left(\frac{\partial}{\partial \xi}+i \frac{\partial}{\partial \eta}\right), f=f(\xi, \eta) \in C_{c}^{\diamond}\right)$, then U and V are different C_{c}^{∞}-spectral representations corresponding to the same scalar operator.

In the present paper, we shall show that, for two commuting spectral representations U and V corresponding to the same scalar operator, $U(f)-V(f)$ is quasi-nilpotent and in many cases, there is a relation expressed in the above form. (See $\S 3$ and $\S 6$.)

On the due course of our argument, we shall see (§4) that the operators $S_{U}=U(\lambda)$ and $S_{U}^{*}=U(\bar{\lambda})(\lambda=\xi+i \eta$ and $\bar{\lambda}=\xi-i \eta)$ together determine the representation U. Thus, in connection with our result mentioned above, we see that $S_{U}^{*}-S_{V}^{*}$ is nilpotent in a certain sense when $S_{U}=S_{V}$ and S_{U}^{*} commutes with S_{V}^{*} (§5).

We are able to consider the uniquely determined canonical representation for a scalar opertor S satisfying $S=S_{U}=S_{U}^{*}$ (§7). Such operators can be regarded as a generalization of Hermitian operators and will be called real scalar operators.

§ 1. Preliminaries.

1) The space $C_{c}^{m}(0 \leq m \leq \infty)$. In the present paper, the basic function algebra (cf. [3]) is restricted to $C_{c}^{m}(0 \leq m \leq \infty)$, the space of all complex valued m-times continuously differentiable (infinitely differentiable, if $m=\infty$) functions with compact supports on the two dimensional real space R^{2}. When we speak of a point of R^{2} as a variable of functions, we often identify it with a point in the complex number field C, which is topologically equivalent to R^{2}. Thus, $f(\lambda)$ and $f(\xi, \eta)$ express the same function, where $\lambda=\xi+i \eta \in C$ and $(\xi, \eta) \in R^{2}$. Throughout this paper, δ always denotes a compact set and σ an
