On Limits of BLD Functions along Curves

Makoto Ohtsuka (Received March 18, 1964)

In the preceding paper [4], F-Y. Maeda proved that almost every Green line converges to one point on the boundary obtained by a certain compactification of a Green space, notably for the Kuramochi boundary. We shall use the contents of [4] freely. In this note we shall prove that every curve on a space $\mathscr E$ has a similar property, except for those belonging to a family with infinite extremal length.

Consider a space $\mathscr E$ in the sense of Brelot and Choquet [1]; $\mathscr E$ may not be a Green space. We begin with the definition of extremal length of a family Γ of locally rectifiable non-degenerate curves on $\mathscr E$. Any measurable function $\rho \geq 0$ on $\mathscr E$ with the property that $\int_{c} \rho \, ds$ is defined and ≥ 1 for each $c \in \Gamma$ is called admissible (in association with Γ) and the module $M(\Gamma)$ of Γ is defined by $\inf_{\rho} \int \rho^2 dv$, where ρ is admissible and dv is the volume element. The extremal length of Γ is defined by $1/M(\Gamma)$. We shall say that almost every curve on $\mathscr E$ has a certain property if the module of the exceptional family vanishes. The definitions of an admissible ρ and the module need obvious modifications in case the dimension of $\mathscr E$ is two. However, we shall use higher dimensional phrases in the sequel.

Let $\overline{\mathscr{E}}$ be a topological space containing \mathscr{E} such that \mathscr{E} is everywhere dense in $\overline{\mathscr{E}}$ and any two points of $\overline{\mathscr{E}}$ are separated by a continuous function on $\overline{\mathscr{E}}$; $\overline{\mathscr{E}}$ may not be compact. We set $\Delta = \overline{\mathscr{E}} - \mathscr{E}$ and denote by $C_{\mathscr{E}}(\overline{\mathscr{E}})$ the family of functions consisting of the restrictions to \mathscr{E} of all the bounded continuous functions on $\overline{\mathscr{E}}$.

A family $\mathcal Q$ of real functions on $\mathscr E$ is said to separate points of $\overline{\mathscr E}$ (Δ resp.) if, for any different $P_1, P_2 \in \overline{\mathscr E}$ (Δ resp.), there is $f \in \mathcal Q$ such that

$$\lim_{\substack{P \to P_1 \\ P \in \mathscr{E}}} f(P) > \overline{\lim}_{\substack{P \to P_2 \\ P \in \mathscr{E}}} f(P).$$

We shall say that a function has a limit (a finite limit resp.) along an open curve on $\mathscr E$ if it has a limit (a finite limit resp.) as the point moves on the curve in each direction.

Using the well-known inequality $M(\bigcup \Gamma_n) \leq \sum_n M(\Gamma_n)$, we can prove the following theorem in a fashion similar to the proof of Theorem 1 of F-Y.