J. Sci. Hiroshima Univ. Ser. A-I 29 (1965), 87-96

A Computation of Extremal Length in an Abstract Space

Makoto Ohtsuka (Received March 10, 1965)

In [2] and [3] we computed the extremal length of harmonic subflows in an *n*-dimensional *C*-space. In this paper we shall compute the extremal length of a certain class of measures in an abstract space. The main results of [3] are special cases of the results in the present paper.

1. Let X be an abstract space and \mathfrak{A} be a σ -field¹⁾ of subsets of X. By a measure in this paper we shall mean a non-negative countably additive set-function. Let μ be a measure on \mathfrak{A} . With each $x \in X$, we associate an abstract space Y_x , a σ -field \mathfrak{B}_x of subsets of Y_x and a measure ν_x defined on \mathfrak{B}_x . We shall denote by Z the set of all couples $(x, y), x \in X, y \in Y_x$. Suppose that there is a σ -field \mathfrak{G} of sets in $Z^{(2)}$ which contains all sets of the form $\{(x, y); x \in A \in \mathfrak{A}, y \in Y_x\}^{(3)}$ and which, for every $E \in \mathfrak{G}$, satisfies

(1) $E_x = \{y \in Y_x; (x, y) \in E\}$ belongs to \mathfrak{B}_x for every $x \in X$ not belonging to $A_E \in \mathfrak{A}$ with $\mu(A_E) = 0$,⁴⁾

(2) $\nu_x(E_x)$ is an \mathfrak{A} -measurable function defined on $X - A_E$. We set

$$\alpha(E) = \int_X \nu_x(E_x) d\mu(x) \quad \text{for } E \in \mathfrak{G}$$

If $E^{(1)}$, $E^{(2)}$, ... are mutually disjoint sets of \mathfrak{S} , then $\alpha(\bigcup_{n} E^{(n)}) = \sum_{n} \alpha(E^{(n)})$. Thus, α is a measure on \mathfrak{S} . If f is non-negative and \mathfrak{S} -measurable, it is inferred that f(x, y) is a \mathfrak{B}_x -measurable function of y on Y_x for μ -a.e. $x \in X$, that $\int_{Y_x} f d\nu_x$ is an \mathfrak{A} -measurable function defined for μ -a.e. $x \in X$ and that

$$\int f d\alpha = \int_X \left(\int_{Y_x} f d\nu_x \right) d\mu(x).$$

¹⁾ This means that \mathfrak{A} is not empty, $A \in \mathfrak{A}$ implies X - A and $A_1, A_2, \ldots \in \mathfrak{A}$ implies $\bigcup_n A_n \in \mathfrak{A}$. Sometimes, it is called a Borel field or σ -algebra.

²⁾ The existence of & will be discussed in Section 6.

³⁾ Any set of this form satisfies conditions (1) and (2) imposed below, because $Z \in \mathfrak{G}$ satisfies condition (2).

⁴⁾ This fact will be expressed as "for μ -a.e. $x \in X$ ".