J. Sci. Hiroshima Univ. Ser. A-I 29 (1965), 11-15

Notes on the Theory of Differential Forms on Algebraic Varieties

Yoshikazu Nakai (Received February 27, 1965)

This note contains two rather separate topics. The first theorem is a version of Lefschetz' theorem in the language of differential forms. The second one is a characterization of abelian subvariety of an abelian variety. They are a continuation of our preceding papers [2] and $[3]^{1}$. As addenda we shall give corrections to the cited papers [2] and [3].

§ 1. Isomorphism of j_Y^* .

We shall prove in this § the following

THEOREM 1.1. Let X^n be a non-singular projective variety and let Y be a non-singular irreducible hypersurface section of X of order m. Let j_Y be the injection $Y \rightarrow X$ and j_Y^* be its adjoint map $H^0(X, \Omega_X) \rightarrow H^0(Y, \Omega_Y)$, where Ω_X, Ω_Y are the sheaves of germs of regular differential forms of degree 1 on X and Y respectively. Then if $n \ge 3$ and m is sufficiently large j_Y^* is an isomorphism of $H^0(X, \Omega_X)$ and $H^0(Y, \Omega_Y)$.

We have proved already in [2] that j_Y^* is an injective map provided *m* is sufficiently large (Theorem 5 in [2]). Hence to prove Theorem 1 it suffices to prove the following:

PROPOSITION 1.2. Let X be as in Theorem 1 and let \mathcal{O} be the structure sheaf of X and let m_0 be an integer such that

- (1) $H^{i}(X, \mathcal{O}_{X}(-m)) = 0 \text{ for } m \geq m_{0} \text{ and } i = 1, 2.$
- (2) $H^1(X, \mathcal{Q}_X(-m)) = 0 \text{ for } m \geq m_0.$

If Y is a generic hypersurface section of order $\gg m_0$, then j_Y^* is a surjective map.

PROOF. Let us denote by \mathscr{P} the sheaf of ideals defined by Y, i.e., the sheaf of germs of rational functions f such that (f) > Y. As before let $\mathscr{Q}_X, \mathscr{Q}_Y$ be the sheaves of germs of regular differential forms on X and Y respectively.

¹⁾ The numbers in the bracket refer to the bibliography at the end of the paper.