Some Examples Related to Duality Theorem in Linear Programming

Michio Yoshida (Received March 11, 1966)

The duality problems in linear programming may read as follows. Suppose an $m \times n$ matrix $A = (a_{ij})$, a column vector $\mathbf{b} = (b_1, \dots, b_m)$ and a row vector $\mathbf{c} = (c_1, \dots, c_n)$ are given.

The primal problem: Find a column vector $\mathbf{u} = (u_1, \dots, u_n)$ which maximizes the linear form \mathbf{cu} subject to the conditions $A\mathbf{u} \leq \mathbf{b}$ and $\mathbf{u} \geq 0$.

The dual problem: Find a row vector $\mathbf{v} = (v_1, \dots, v_n)$ which minimizes the linear form \mathbf{vb} subject to the conditions $\mathbf{v}A \ge \mathbf{c}$ and $\mathbf{v} \ge 0$.

In each problem a vector satisfying the required conditions is called feasible, and if it attains the maximum or minimum it is called optimal.

These problems can be represented by the following tableau:

(≥0)	u_1	•••	u_j	 u_n	≦
v_1	a_{11}		a_{1j} .	 a_{in}	b_1
v_i	a_{i1}		a_{ij}	 a_{in}	b_i
•			•	 •	
$v_{\it m}$	a_{m1}		a_{mj}	 a_{mn}	b_m
VII	c_1		c_j	 c_n	min max

By taking inner products of the row of u's with the rows of A and the row of c's, we obtain the constraints $Au \le b$ and the linear form cu of the primal; the inner products of the column of v's with the columns of A and the column of b's yield the dual constraints $Av \ge c$ and the linear form vb.

Associated with these problems is the following well-known theorem:

The Duality Theorem. If the primal is feasible and if $\sup \mathbf{cu} < \infty$, then there exist optimal solutions in the dual as well as in the primal, and moreover the extremal values of the linear forms coincide, i.e., $\max \mathbf{cu} = \min \mathbf{vb}$.

In the foregoing paper [1], M. Ohtsuka investigated the problems in a very general situation, and obtained extensions of the duality theorem. We refer necessary notions and notations to [1]. We shall show in the present paper that the conditions imposed in Ohtsuka's Theorems 2 and 3 are in a way necessary. Actually, even if $\mathcal{M} \neq \emptyset$, $-\infty < M < \infty$ and \emptyset , f and g are