J. Sci. Hiroshima Univ. Ser. A-I 30 (1966), 1-9

A Note on Normal Ideals

M. F. Janowitz

(Received November 20, 1965)

§1. Introduction

In $\lceil 3 \rceil$, p. 85 F. Maeda writes $a \bigtriangledown b$ in a lattice L with 0 to denote the fact that $a \wedge b = 0$ and $(a \vee x) \wedge b = x \wedge b$ for all x in L. He then uses this relation to investigate direct sum decompositions of such lattices. If L is modular the relation \bigtriangledown is symmetric and the mapping $S \rightarrow S^{\bigtriangledown} = \{f: s \bigtriangledown f \text{ for } f \}$ all $s \in S$ induces a Galois connection in the lattice I(L) of all ideals of L. The Galois closed objects (i.e., those ideals S such that $S = S^{\nabla \nabla}$) are called In a general continuous geometry (see $\lceil 3 \rceil$, p. 90) the normal normal ideals. ideals play a role analogous to that played by the center of a continuous geometry. In this note we investigate normal ideals in a more general setting. In §2 we show that in a lattice L with 0, an ideal J is in the center of I(L) if and only if it is a direct summand of L. In $\S3$ we use the fact that the relation \bigtriangledown is symmetric in a relatively complemented lattice with 0 to define normal ideals in such a lattice. We then show that if L is a relatively complemented lattice with 0 and 1, then the center of the completion by cuts \overline{L} of L is precisely the set of normal ideals which are kernels of In the case of a complemented modular lattice, the congruence relations. center of \overline{L} is just the set of normal ideals of L. In §4 these results are extended to the case of an arbitrary relatively complemented lattice with 0.

§2. Direct summands

Let $S_1, S_2, ..., S_n$ be subsets of a lattice L with 0. Following the terminology of F. Maeda ([3], p. 85) if

- (1°) for any element a of $L, a = a_1 \vee \cdots \vee a_n$ with $a_i \in S_i (i=1,\dots,n)$,
- (2°) $i \neq j$ implies $S_j \subseteq S_i^{\bigtriangledown}$,

we say that L is a direct sum of $S_1, ..., S_n$ and write $L = S_1 \oplus ... \oplus S_n$. The subsets $S_1, ..., S_n$ will be called *direct summands* of L. By [3], Lemma 1.3, p. 86 every direct summand is an ideal of L. We proceed to show that the direct summands are precisely the central elements of I(L).

THEOREM 1. Let L be a lattice with 0. An ideal J of L is a central element of I(L) if and only if it is a direct summand of L.