A Note on Normal Ideals

M. F. Janowitz

(Received November 20, 1965)

§ 1. Introduction

In [3], p. 85 F. Maeda writes $a \nabla b$ in a lattice L with 0 to denote the fact that $a \wedge b=0$ and $(a \vee x) \wedge b=x \wedge b$ for all x in L. He then uses this relation to investigate direct sum decompositions of such lattices. If L is modular the relation ∇ is symmetric and the mapping $S \rightarrow S^{\nabla}=\{f: s \nabla f$ for all $s \in S\}$ induces a Galois connection in the lattice $I(L)$ of all ideals of L. The Galois closed objects (i.e., those ideals S such that $S=S^{\nabla \nabla}$) are called normal ideals. In a general continuous geometry (see [3], p. 90) the normal ideals play a role analogous to that played by the center of a continuous geometry. In this note we investigate normal ideals in a more general setting. In $\S 2$ we show that in a lattice L with 0 , an ideal J is in the center of $I(L)$ if and only if it is a direct summand of L. In $\S 3$ we use the fact that the relation ∇ is symmetric in a relatively complemented lattice with 0 to define normal ideals in such a lattice. We then show that if L is a relatively complemented lattice with 0 and 1 , then the center of the completion by cuts L of L is precisely the set of normal ideals which are kernels of congruence relations. In the case of a complemented modular lattice, the center of \bar{L} is just the set of normal ideals of L. In $\S 4$ these results are extended to the case of an arbitrary relatively complemented lattice with 0 .

§2. Direct summands

Let $S_{1}, S_{2}, \ldots, S_{n}$ be subsets of a lattice L with 0 . Following the terminology of F. Maeda ([3], p. 85) if
$\left(1^{\circ}\right)$ for any element a of $L, a=a_{1} \vee \cdots \vee a_{n}$ with $a_{i} \in S_{i}(i=1, \ldots, n)$,

$$
i \neq j \quad \text { implies } \quad S_{j} \subseteq S_{i}^{\nabla},
$$

we say that L is a direct sum of S_{1}, \ldots, S_{n} and write $L=S_{1} \oplus \cdots \oplus S_{n}$. The subsets S_{1}, \ldots, S_{n} will be called direct summands of L. By [3], Lemma 1.3, p. 86 every direct summand is an ideal of L. We proceed to show that the direct summands are precisely the central elements of $I(L)$.

Theorem 1. Let L be a lattice with 0 . An ideal J of L is a central element of $I(L)$ if and only if it is a direct summand of L.

