An Example of Non-minimal Kuramochi Boundary Points

Fumi-Yuki MAEDA

(Received February 28, 1967)

Introduction.

Z. Kuramochi [3] constructed an example of a plane domain whose Kuramochi boundary contains non-minimal points. However, he showed only the existence of non-minimal points and did not determine the distribution of such points. In this note, applying his idea, we shall give an example of a domain in the *d*-dimensional Euclidean space R^d ($d \ge 2$) whose Kuramochi boundary contains non-minimal points and for which we are able to determine the distribution of non-minimal points completely. Our example is similar to, but simpler than Kuramochi's.

More precisely, let F be a compact set in \mathbb{R}^d such that components of F cluster to the origin and F lies on the hyperplane $P = \{x = (x_1, \dots, x_d); x_d = 0\}$. Unber certain conditions on F, we shall see that the Kuramochi boundary of $\mathbb{R}^d - F$ corresponding to the origin is homeomorphic to the closed interval [-1, 1], the points corresponding to 1 and -1 are minimal and the other points are non-minimal (Theorem 4.1).

One may refer to [2], [4] and [5] for the theory of Kuramochi boundary, including the notions of full-harmonic and full-superharmonic functions, those of potential type, Kuramochi kernel (denoted by N in [4], [5] and by \tilde{g} in [2]), minimal points and non-minimal points. To apply the general theory, we take the domain $\mathcal{Q} = \hat{R}^d - F$ (instead of $R^d - F$), where \hat{R}^d is the one point compactification of R^d . \mathcal{Q} is a space of type \mathfrak{S} in the sense of Brelot-Choquet. Let B be the unit ball $\{x; |x| < 1\}$ in R^d and suppose F is contained in B. Then $K_0 = \hat{R}^d - B$ is a compact set in \mathcal{Q} . Thus we can consider full-superharmonic functions on $\mathcal{Q}_0 = \mathcal{Q} - K_0 = B - F$ relative to \mathcal{Q} . The set of all harmonic full-superharmonic functions of potential type on \mathcal{Q}_0 will be denoted by $\mathcal{D}_b \equiv \mathcal{D}_b(\mathcal{Q}_0)$ (cf. [4]). We remark here that any $u \in \mathcal{D}_b$ vanishes on $S = \{x; |x| = 1\}$, i.e., u is continuous if it is extended by 0 on S.

For a subset A in \mathbb{R}^d , let \overline{A} and ∂A be the closure and the boundary (in \mathbb{R}^d) of A, respectively. If $A \subset P$, let $\partial' A$ be the boundary of A relative to the (d-1)-dimensional space P.