On Some Properties of $t(n, \Phi)$ and $ft(n, \Phi)$

Shigeaki Tôgô

(Received February 27, 1967)

1. Introduction

It is known that every finite-dimensional Lie algebra L over a field $\boldsymbol{\vartheta}$ of arbitrary characteristic has a faithful finite-dimensional representation. If $\boldsymbol{\vartheta}$ is an algebraically closed field of characteristic 0, then every solvable subalgebra of $\mathfrak{gl}(n, \boldsymbol{\vartheta})$ is isomorphic to a subalgebra of the Lie algebra $\mathfrak{t}(n, \boldsymbol{\vartheta})$ of all the triangular matrices. Among solvable linear Lie algebras the following three Lie algebras are most familiar to us: $\mathfrak{t}(n, \boldsymbol{\vartheta})$, the Lie algebra $\mathfrak{fl}(n, \boldsymbol{\vartheta})$ of all the triangular matrices of trace 0, and the Lie algebra $\mathfrak{n}(n, \boldsymbol{\vartheta})$ of all the triangular matrices with 0's on the diagonal. B. Kostant orally informed the author that he had determined the structure of the first cohomology group $H^1(L, L)$ of $\mathfrak{n}(n, \boldsymbol{\vartheta})$ and that the method of constructing an outer derivation which has been employed in the proof of Theorem 1 in [1] gives another way of finding all the nilpotent outer derivations of $\mathfrak{n}(n, \boldsymbol{\vartheta})$.

It therefore seems to be an interesting problem to ask the structure of the first cohomology groups $H^1(L, L)$ of $t(n, \boldsymbol{\Phi})$ and $\mathfrak{ft}(n, \boldsymbol{\Phi})$. In this paper we are concerned with this problem and show the following two theorems.

THEOREM 1. Let L be $ft(n, \Phi)$ with $n \ge 2$.

(i) If the characteristic of $\boldsymbol{\Phi}$ is 0, or if the characteristic of $\boldsymbol{\Phi}$ is $p \neq 0$ and $n \not\equiv 0 \pmod{p}$, then $H^1(L, L) = (0)$.

(ii) If the characteristic of Φ is $p \neq 0$ and $n \equiv 0 \pmod{p}$ and if $n \geq 5$, then $\dim H^1(L, L) = n$.

THEOREM 2. Let $\boldsymbol{\Phi}$ be a field of arbitrary characteristic and let L be $t(n, \boldsymbol{\Phi})$ with $n \geq 2$. Then dim $H^1(L, L) = n$.

In Theorem 1 we exclude the case where the characteristic of $\boldsymbol{\varPhi}$ is $p \neq 0$, $n \equiv 0 \pmod{p}$ and $n \leq 4$. The structure of the first cohomology group $H^1(L, L)$ of $\mathfrak{ft}(n, \boldsymbol{\varPhi})$ in this case will be determined in Section 5.

Throughout this paper, we shall denote by $\boldsymbol{\emptyset}$ a field of arbitrary characteristic unless otherwise stated, and by e_0 the identity matrix in $\mathfrak{gl}(n, \boldsymbol{\emptyset})$.

2. Lemmas

Throughout Sections 2, 3, 4 and 5, we denote $\mathfrak{ft}(n, \Phi)$ by L for the sake