On Some Properties of $\mathfrak{t}(\boldsymbol{n}, \Phi)$ and $\mathfrak{f t}(n, \Phi)$

Shigeaki TôGô
(Received February 27, 1967)

1. Introduction

It is known that every finite-dimensional Lie algebra L over a field Φ of arbitrary characteristic has a faithful finite-dimensional representation. If Φ is an algebraically closed field of characteristic 0 , then every solvable subalgebra of $\mathfrak{g l}(n, \Phi)$ is isomorphic to a subalgebra of the Lie algebra $t(n, \Phi)$ of all the triangular matrices. Among solvable linear Lie algebras the following three Lie algebras are most familiar to us: $\mathrm{t}(n, \Phi)$, the Lie algebra $\mathfrak{f t}(n, \Phi)$ of all the triangular matrices of trace 0 , and the Lie algebra $\mathfrak{n}(n, \Phi)$ of all the triangular matrices with 0 's on the diagonal. B. Kostant orally informed the author that he had determined the structure of the first cohomology group $H^{1}(L, L)$ of $n(n, \Phi)$ and that the method of constructing an outer derivation which has been employed in the proof of Theorem 1 in [1] gives another way of finding all the nilpotent outer derivations of $\mathfrak{n}(n, \Phi)$.

It therefore seems to be an interesting problem to ask the structure of the first cohomology groups $H^{1}(L, L)$ of $t(n, \Phi)$ and $\mathfrak{j t}(n, \Phi)$. In this paper we are concerned with this problem and show the following two theorems.

Theorem 1. Let L be ft $n, ~(\Phi)$ with $n \geq 2$.
(i) If the characteristic of Φ is 0 , or if the characteristic of Φ is $p \neq 0$ and $n \neq 0(\bmod p)$, then $H^{1}(L, L)=(0)$.
(ii) If the characteristic of Φ is $p \neq 0$ and $n \equiv 0(\bmod p)$ and if $n \geq 5$, then $\operatorname{dim} H^{1}(L, L)=n$.

Theorem 2. Let Φ be a field of arbitrary characteristic and let L be $\mathrm{t}(n, \Phi)$ with $n \geq 2$. Then $\operatorname{dim} H^{1}(L, L)=n$.

In Theorem 1 we exclude the case where the characteristic of Φ is $p \neq 0$, $n \equiv 0(\bmod p)$ and $n \leq 4$. The structure of the first cohomology group $H^{1}(L, L)$ of $\mathfrak{f t}(n, \Phi)$ in this case will be determined in Section 5 .

Throughout this paper, we shall denote by Φ a field of arbitrary characteristic unless otherwise stated, and by e_{0} the identity matrix in $\mathfrak{g l}(n, \Phi)$.

2. Lemmas

Throughout Secticns $2,3,4$ and 5 , we denote $\mathfrak{f t}(n, \Phi)$ by L for the sake

